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Abstract

k-subset sampling is ubiquitous in machine learn-

ing, enabling regularization and interpretability

through sparsity. The challenge lies in render-

ing k-subset sampling amenable to end-to-end

learning. This has typically involved relaxing the

reparameterized samples to allow for backpropa-

gation, with the risk of introducing high bias and

high variance. In this work, we fall back to dis-

crete k-subset sampling on the forward pass. This

is coupled with using the gradient with respect

to the exact marginals, computed efficiently, as a

proxy for the true gradient. We show that our gra-

dient estimator, SIMPLE, exhibits lower bias and

variance compared to state-of-the-art estimators,

including the straight-through Gumbel estimator

when k = 1. Empirical results show improved

performance on learning to explain and sparse

linear regression. We give an algorithm comput-

ing the exact ELBO for the k-subset distribution,

obtaining significantly lower loss than SOTA.

1. Introduction

k-subset sampling, sampling a subset of size k of n vari-

ables, is omnipresent in machine learning. It lies at the

core of many fundamental problems that rely upon learning

sparse features representations of input data, All such tasks

involve optimizing an expectation of an objective function

with respect to a latent discrete distribution parameterized

by a neural network, which are often assumed intractable.

Score-function estimators offer a cloyingly simple solution:

rewrite the gradient of the expectation as an expectation of

the gradient, which can subsequently be estimated using

a finite number of samples offering an unbiased estimate

of the gradient. Simple as it is, score-function estimators

suffer from very high variance which can interfere with
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training. This provided the impetus for other, low-variance,

gradient estimators, chief among them are those based on

the reparameterization trick, which allows for biased, but

low-variance gradient estimates. The reparameterization

trick, however, does not allow for a direct application to

discrete distributions , thereby prompting continuous relax-

ations, such as the Gumbel-softmax trick (Jang et al., 2017),

or the Concrete distribution (Maddison et al., 2017): con-

tinuous relaxations that allow for reparameterized gradients

w.r.t. the parameters of a categorical distribution, precluding

the k-subset distribution. Reparameterizable subset sam-

pling (Xie & Ermon, 2019) generalizes Gumbel-softmax

to k-subsets which renders k-subset sampling amenable to

backpropagation but introduces bias in the learning by using

relaxed samples.

In this paper, we set out with the goal of avoiding all such

relaxations. Instead, we fall back to discrete sampling on

the forward pass. On the backward pass, we reparameterize

the gradient of the loss function with respect to the sam-

ples as a function of the exact marginals of the k-subset

distribution. Computing the exact conditional marginals

is, in general, intractable (Roth, 1996). We give an effi-

cient algorithm for computing the k-subset probability, and

show that the conditional marginals correspond to partial

derivatives, and are therefore tractable for the k-subset dis-

tribution. We show that our proposed gradient estimator for

the k-subset distribution, coined SIMPLE, is reminiscent of

the straight-through (ST) Gumbel estimator when k = 1,

with the gradients taken w.r.t. the unperturbed marginals.

We empirically demonstrate that SIMPLE exhibits lower bias

and variance compared to other known gradient estimators,

including the ST Gumbel estimator in the case k = 1.

We include an experiment on the task of learning to explain

(L2X) using the BEERADVOCATE dataset (McAuley et al.,

2012), where the goal is to select the subset of words that

best explains the model’s classification of a user’s review.

We also include an experiment on the task of stochastic

sparse linear regression, where the goal is to learn the best

sparse model, and show that we are able to recover the

Kuramoto–Sivashinsky equation. Finally, we develop an

efficient computation for the calculation of the exact varia-

tional evidence lower bound (ELBO) for the k-subset distri-

bution, which when used in conjunction with SIMPLE leads

to state-of-the-art discrete sparse VAE learning.
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(a) The problem setting considered in our paper. On the forward
pass we sample exactly from a k-subset distribution parameterized
by a neural network. On the backward pass, we approximate the
true gradient by the product of the derivative of marginals and the
loss gradient of the sample-wise loss.
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(b) A comparison of the bias and variance of the gradient
estimators (left). We used the cosine distance, defined as 1−

cosine similarity, in place of the euclidean distance as we only
care about the direction of the gradient, not magnitude. The bias,
variance and error were estimated using a sample of size 10,000.

2. Problem Statement and Motivation

We consider models described by the equations

θ = hv(x), z ∼ pθ(z |
∑

i zi = k), ŷ = fu(z,x) (1)

where x ∈ X and ŷ ∈ Y denote feature inputs and target

outputs, respectively, hv : X → Θ and fu : Z × X → Y
are smooth, parameterized maps and θ are logits inducing a

distribution over the latent binary vector z defined as

pθ(z) =

n
∏

i=1

pθi(zi), where pθi(zi) = σ(θi). (2)

The goal of our stochastic latent layer is not to simply sam-

ple from pθ(z), which would yield samples with a Ham-

ming weight between 0 and n (i.e., with an arbitrary number

of ones). Instead, we are interested in sampling from the

distribution restricted to samples with a Hamming weight

of k, for any given k. That is, we are interested in sampling

from the conditional distribution pθ(z |
∑

i zi = k).

Conditioning the distribution pθ(z) on this k-subset con-

straint introduces intricate dependencies between each of

the zi’s. The probability of sampling a given k-subset z is

pθ(z |
∑

i zi = k) = pθ(z)/pθ(
∑

i zi = k) · J
∑

i zi = kK

where J·K denotes the indicator function. In other words,

the probability of sampling each k-subset is re-normalized

by pθ (
∑

i zi = k) – the probability of sampling exactly

k items from the unconstrained distribution induced by

encoder hv. The quantity pθ(
∑

i zi = k) =
∑

z
pθ (z) ·

J
∑

i zi = kK appears to be intractable. We show that not to

be the case, providing a tractable algorithm for computing it.

Given a set of samples D, we are concerned with learning

the parameters ω = (v,u) of the architecture in (1) through

minimizing the training error L, which is the expected loss:

L(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)] (3)

where θ = hv(x) and ℓ : Y × Y → R
+ is a point-wise

loss function. This formulation, illustrated in Figure 1a, is

general and subsumes many settings. Different choices of

mappings hv and fu, and sample-wise loss ℓ define various

tasks. Learning then requires computing the gradient of L
w.r.t. ω = (v,u). The gradient of L w.r.t. u is given by

∇uL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)],

(4)

where ŷ = fu(z,x) is the decoding of a latent sample z.

Furthermore, the gradient of L w.r.t. v is given by

∇vL(x,y;ω) = ∂vhv(x)
⊤∇θL(x,y;ω) (5)

where the loss’s gradient w.r.t. the encoder being

∇θL(x,y;ω) := ∇θEz∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)].

One challenge lies in computing the expectation in (3) and

(4), which has no known closed-form solution requiring a

Monte-Carlo estimate by sampling from pθ(z |
∑

i zi = k).

A second, more substantial hurdle lies in computing

∇θL(x,y;ω) in (5) due to the non-differentiable nature

of discrete sampling. One could rewrite ∇θL(x,y;ω) as

E
z∼pθ(z|

∑
i zi=k)[ℓ(fu(z,x),y) · ∇θ log pθ (z |

∑

i zi = k)]

which is known as the REINFORCE estimator (Williams,

1992), or the score function estimator (SFE). It is typically

avoided due to its notoriously high variance, despite its ap-

parent simplicity. Instead, typical approaches (Xie & Ermon,

2019; Plötz & Roth, 2018) reparameterize the samples as a

deterministic transformation of the parameters, and indepen-

dent standard Gumbel noise, and relaxing the deterministic

transformation, the top-k function, to allow for backprop.

3. SIMPLE: Subset Implicit Likelihood

Our goal is to build a gradient estimator for ∇θL(x,y;ω).
We envision a hypothetical sampling-free architecture,

where the downstream neural network fu is a function of

the marginals, µ := µ(θ) := {pθ(zj |
∑

i zi = k)}nj=1,

instead of a discrete sample z, resulting in a loss Lm s.t.

∇θLm(x,y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y).

When the marginals µ(θ) can be efficiently computed and

differentiated, such a hypothetical pipeline can be trained
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Algorithm 1 PrExactlyk(θ, n, k)

Input: The logits θ of the distribution, the num-

ber of variables n, and the subset size k
Output: pθ(

∑

i zi = k)

// a[i, j] = pθ(
∑i

m=1 zm = j) for all i, j
initialize a to be 0 everywhere

a[0, 0] = 1 // pθ(
∑0

m=1 zm = 0) = 1
for i = 1 to n do

for j = 0 to k do

// cf. constructive proof of Prop. 1

a[i, j] = a[i− 1, j] · pθi(zi = 0)
+ a[i− 1, j − 1] · pθi(zi = 1)

return a[n, k]

Algorithm 2 Sample(θ, n, k)

Input: The logits θ of the distribution, the num-

ber of variables n, and the subset size k
Output: z = (z1, . . . , zn) ∼ pθ(z |

∑

i zi = k)
sample = [ ], j = k
for i = n to 1 do

// cf. proof of Prop. 2

p = a[i− 1, j − 1]
zi ∼ Bernoulli(p · pθi(zi = 1)/a[i, j])

// Pick next state based on value of sample

if zi = 1 then j = j − 1
sample.append(zi)

return sample
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Figure 2: ELBO against epochs. (Left) SIMPLE against

different flavors of IMLE on the 10-subset DVAE, and

(Right) ST Gumbel Softmax on the 1-subset DVAE.

end-to-end. Furthermore, Domke (2010) observed that,

for an arbitrary loss function ℓm defined on the marginals,

the Jacobian of the marginals w.r.t. the logits is symmet-

ric. Consequently, computing the gradient of the loss w.r.t.

the logits, ∇θLm(x,y;ω), reduces to computing the di-

rectional derivative, or the Jacobian-vector product, of the

marginals w.r.t. the logits in the direction of the gradient

of the loss. This offers an alluring opportunity: the condi-

tional marginals characterize the probability of each zi in

the sample, and could be thought of as a differentiable proxy

for the samples. Specifically, by reparameterizing z as a

function of the conditional marginal µ under approximation

∂µz ≈ I as proposed by Niepert et al. (2021), and using

the straight-through estimator for the gradient of the sample

w.r.t. the marginals on the backward pass, we approximate

∇θL(x,y;ω) ≈ ∂θµ(θ)∇zL(x,y;ω), (6)

where the directional derivative of the marginals can be

taken along any downstream gradient, rendering the whole

pipeline end-to-end learnable despite presence of sampling.

Now, estimating the gradient of the loss w.r.t. the param-

eters can be thought of as decomposing into two sub-

problems: (P1) Computing the derivatives of conditional

marginals ∂θµ(θ), which requires the computation of the

conditional marginals, and (P2) Computing the gradient

of the loss w.r.t. the samples ∇zL(x,y;ω) using sample-

wise loss, which requires drawing exact samples. These

two problems are complicated by conditioning on the k-

subset constraint, which introduces intricate dependencies

to the distribution, and is infeasible to solve naively, e.g. by

enumeration. We will show simple, efficient, and exact so-

lutions to each problem, at the heart of which is the insight

that we need not care about the variables’ order, only their

sum, introducing symmetries that simplify the problem.

3.1. Derivatives of Conditional Marginals

In many probabilistic models, marginal inference is a #P-

hard problem (Roth, 1996). That is not the case for the

k-subset distribution. We notice the conditional marginals

correspond to the partial derivatives of the log-probability of

the k-subset constraint. To see this, note that the derivative

of a multi-linear function with respect to a single variable

retains all the terms referencing that variable, and drops all

other terms; this corresponds exactly to the unnormalized

conditional marginals. By taking the derivative of the log-

probability, this introduces the k-subset probability in the

denominator, leading to conditional marginals. Intuitively,

the rate of change of the k-subset probability w.r.t. a variable

only depends on that variable through its length-k subsets.

Theorem 1. Let pθ(
∑

j zj = k) be the probability of

exactly-k of the unconstrained distribution parameterized

by logits θ. For every Zi, its conditional marginal is

pθ

(

zi |
∑

j zj = k
)

=
∂

∂αi
log pθ(

∑

j zj = k),

where αi := log pθi(zi) denotes the log marginals.

To establish the tractability of the above computation of the

conditional marginals, we need to show that the probability

of the exactly-k constraint pθ(
∑

i zi = k) is tractable

Proposition 1. The probability pθ (
∑

i zi = k) of sampling

exactly k items from the unconstrained distribution pθ(z)
over n items can be computed exactly in time O(nk).

Since we have a closed-form pθ(
∑n

i zi = k), which allows

us to compute conditional marginals pθ(zi |
∑

j zj = k)
by Theorem 1 via auto-differentiation. This further allows

the computation of the derivatives of conditional marginals

∂θµ(θ)i = ∂θ pθ(zi |
∑

j zj = k) to be amenable to auto-

differentiation, solving problem (P1) exactly and efficiently.

3.2. Gradients of Loss w.r.t. Samples

What remains is to estimate the value of the loss, which

necessitates faithful sampling from the k-subset distribution.

Exact k-subset Sampling Next we show how to sample

exactly from the k-subset distribution pθ(z |
∑

i zi = k).
We start by sampling the variables in reverse order, that

is, we sample zn through z1. The main intuition being

that, having sampled (zn, zn−1, · · · , zi+1) with a Hamming

weight of k−j, we sample Zi with a probability of choosing

k− j of n− 1 variables and the n-th variable given that we

choose k− j+1 of n variables, formalized in Proposition 2.
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4. Experiments

4.1. Synthetic Experiments

We carried out a series of experiments with a 5-subset dis-

tribution, and a latent space of dimension 10. We set the

loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[∥z − b∥2], where b is

the groundtruth logits sampled from N (0, I). Such a dis-

tribution is tractable: we only have
(

10
5

)

= 252 k-subsets,

allowing the exact gradient to be computed in closed form.

We compare against: exact, which denotes the exact gradi-

ent; SoftSub (Xie & Ermon, 2019), which uses an extension

of the Gumbel-Softmax trick to sample relaxed k-subsets

on the forward pass; I-MLE, which denotes the IMLE gra-

dient estimator (Niepert et al., 2021), where approximate

samples are obtained using perturb-and-map (PAM) on the

forward pass, approximating the marginals using samples

on the backward pass; and score function estimator SFE.

We tease apart SIMPLE’s improvements by comparing three

different flavors: SIMPLE-F, which only uses exact sam-

pling, falling back to estimating the marginals using exact

samples; SIMPLE-B, which uses exact marginals on the

backward pass with approximate PAM samples on the for-

ward pass; SIMPLE, using exact samples on the forward

pass with exact marginals on the backward pass.

Our results are shown in Figure 1b. As expected, we observe

that SFE exhibits no bias, but high variance whereas Soft-

Sub suffers from both bias and variance, due to the Gumbel

noise injection into the samples to make them differentiable.

We observe that I-MLE exhibits very high bias, as well

as very low variance. This can be attributed to the PAM

sampling, which in the case of k-subset distribution does

not sample faithfully from the distribution, but is instead

biased to sampling only the mode of the distribution. This

also means that, by approximating the marginals using PAM

samples, there is a lot less variance to our gradients. On to

our SIMPLE gradient estimator, we see that it exhibits less

bias as well as less variance compared to all the other gra-

dient estimators. We also see that each estimated gradient

is, on average, much more aligned with the exact gradient.

To understand why that is, we compare SIMPLE, SIMPLE-F,

and SIMPLE-B. As hypothesized, we observe that exact

sampling, SIMPLE-F, reduces the bias, but increases the

variance compared to I-MLE, this is since, unlike the PAM

samples, our exact sample span the entire sample space.We

also observe that, even compared to I-MLE, SIMPLE-B, re-

duces variances by marginalizing over all possible samples.

4.2. Discrete Variational Auto-Encoder

Next, we test our SIMPLE gradient estimator on the task

of learning a generative model of MNIST digits using a

discrete variational auto-encoder (DVAE), where the latent

Table 1: Results for the three different aspects with k = 10
(top) and for the aroma aspect for different k (bottom).

Method
Appearance Palate Taste

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.35 ± 0.28 66.81 ± 7.56 2.68 ± 0.06 44.78 ± 2.75 2.11 ± 0.02 42.31 ± 0.61

L2X (t = 0.1) 10.70 ± 4.82 30.02 ± 15.82 6.70 ± 0.63 50.39 ± 13.58 6.92 ± 1.61 32.23 ± 4.92

SoftSub (t = 0.5) 2.48 ± 0.10 52.86 ± 7.08 2.94 ± 0.08 39.17 ± 3.17 2.18 ± 0.10 41.98 ± 1.42

I-MLE (τ = 30) 2.51 ± 0.05 65.47 ± 4.95 2.96 ± 0.04 40.73 ± 3.15 2.38 ± 0.04 41.38 ± 1.55

Method
k = 5 k = 10 k = 15

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.27 ± 0.05 57.30 ± 3.04 2.23 ± 0.03 47.17 ± 2.11 3.20 ± 0.04 53.18 ± 1.09

L2X (t = 0.1) 5.75 ± 0.30 33.63 ± 6.91 6.68 ± 1.08 26.65 ± 9.39 7.71 ± 0.64 23.49 ± 10.93

SoftSub (t = 0.5) 2.57 ± 0.12 54.06 ± 6.29 2.67 ± 0.14 44.44 ± 2.27 2.52 ± 0.07 37.78 ± 1.71

I-MLE (τ = 30) 2.62 ± 0.05 54.76 ± 2.50 2.71 ± 0.10 47.98 ± 2.26 2.91 ± 0.18 39.56 ± 2.07

variables model a probability distribution over k-subsets.

In prior work, the KL-divergence was approximated us-

ing the unconditional marginals, obtained simply through

a Softmax layer. Instead we show that the KL-divergence

between the k-subset distribution and the uniform distri-

bution can be computed exactly. First note that, through

simple algebraic manipulations, the KL-divergence between

the k-subset distribution and the constrained uniform dis-

tribution can be rewritten as the sum of negative entropy,

−H(z), where z ∼ pθ (z |
∑

i zi = k) and log the number

of k-subsets, log
(

n
k

)

(see appendix for details), reducing the

hardness of computing the KL-divergence, to computing the

entropy of a k-subset distribution, for which Algorithm 3

gives a tractable algorithm. Intuitively, the uncertainty in the

distribution over a sequence of length n, k of which are true,

decomposes as the uncertainty over Zn, and the average of

the uncertainties over the remainder of the sequence. We

defer the algorithm and its correctness to the appendix.

We plot the ELBO against the number of epochs, as seen

in Figure 3. We compared against I-MLE using sum-of-

gamma noise as well as Gumbel noise for PAM sampling,

on the 10-subset DVAE, and against ST Gumbel Softmax

on the 1-subset DVAE. We observe a significantly lower

loss on the test set on the 10-subset DVAE, but also on the

1-subset DVAE compared to ST Gumbel Softmax.

4.3. Learning to Explain

Next, we address the problem introduced by the L2X pa-

per (Chen et al., 2018) of learning a k-subset distribution

over words that best explain a given rating. We compare to

relaxation-based baselines L2X (Chen et al., 2018) and Soft-

Sub (Xie & Ermon, 2019) as well as to I-MLE which uses

perturb-and-MAP to both compute an approximate sample

in the forward pass and to estimate the marginals. Table 1

lists results for k ∈ {5, 10, 15} for the AROMA aspect. The

mean-squared error (MSE) of SIMPLE is almost always

lower and its subset precision never significantly exceeded

by the baselines. Table 1 shows results on the remaining

aspects Appearance, Palate, and Taste for k = 10.
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A. Proofs

Theorem 1. Let pθ(
∑

j zj = k) be the probability of

exactly-k of the unconstrained distribution parameterized

by logits θ. For every Zi, its conditional marginal is

pθ

(

zi |
∑

j zj = k
)

=
∂

∂αi
log pθ(

∑

j zj = k),

where αi := log pθi(zi) denotes the log marginals.

Proof. We first rewrite the marginal pθ(
∑

i zi = k) into

a summation as the probability for all possible events by

definition as follows.

pθ(
∑

j zj = k)

=
∑

z:
∑

j zj=k

∏

j:zj=1

exp(αj) ·
∏

j:zj=0

(1− exp(ᾱj))

Here we assume that the probability of zj = 0 is a constant

term w.r.t. parameter αj , i.e., ∂
∂αj

(1 − exp(ᾱj)) = 0.*

Further, the derivative of pθ(
∑

j zj = k) w.r.t. θi is as

follows,

∂

∂αi
pθ(

∑

j zj = k)

=
∂

∂αi

∑

z:
∑

j zj=k∧zi=1

∏

j:zj=1

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

=
∂

∂αi
exp(αi)

∑

z:
∑

j zj=k∧zi=1

∏

j:zj=1,j ̸=i

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

= exp(θi)
∑

z:
∑

j zj=k∧zi=1

∏

j:zj=1,j ̸=i

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

= pθ(
∑

j zj = k ∧ zi = 1),

where the first equality holds since terms corresponding to

zi ̸= 1 has their derivative to be zero w.r.t. θi. It further

holds that

∂

∂αi
log pθ(

∑

j zj = k) =
∂

∂αi
pθ(

∑

j zj = k)

pθ(
∑

j zj = k)

=
pθ(

∑

j zj = k ∧ zi = 1)

pθ(
∑

j zj = k)

= pθ

(

zi |
∑

j zj = k
)

which finishes our proof.

Proposition 1. The probability pθ (
∑

i zi = k) of sampling

exactly k items from the unconstrained distribution pθ(z)
over n items can be computed exactly in time O(nk).

Proof. Our proof is constructive. As a base case, consider

the probability of sampling k = −1 out of n = 0 items.

We can see that the probability of such an event is 0. As

a second base case, consider the probability of sampling

k = 0 out of n = 0 items. We can see that the probably of

such an event is 1. Now assume that we are given the prob-

ability pθ

(

∑n−1
i zi = k′

)

, for k′ = 0, . . . , k, and we are

interested in computing pθ (
∑n

i zi = k). By the partition

*In practice, this can be easily implemented. For exam-
ple, in framework Tensorflow, it can be done by setting
tf.stop_gradients.
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theorem, we can see that

pθ (
∑n

i zi = k) =

pθ

(

∑n−1
i zi = k

)

· pθn(zn = 0)+

pθ

(

∑n−1
i zi = k − 1

)

· pθn(zn = 1)

as events
∑n−1

i zi = k and
∑n−1

i zi = k − 1 are disjoint

and, for any k, partition the sample space. Intuitively, for any

k and n, we can sample k out of n items by choosing k of

n−1 items, and not the n-th item, or choosing k−1 of n−1
items, and the n-th item. The above process gives Algorithm

1, which returns pθ (
∑

i zi = k) in time O(nk).

B. Correctness of Sampling

Proposition 2. Let Sample be defined as in Algorithm 2.

Given n random variables Z1, · · · , Zn, a subset size k, and

a k-subset distribution pθ(z |
∑

i zi = k) parameterized

by logits θ, Algorithm 2 draws exact samples from pθ(z |
∑

i zi = k) in time O(n).

Proof. Assume that variables Zn, · · · , Zi+1 are sam-

pled and have their values to be zn, · · · , zi+1 with
∑n

m=i+1 zm = k − j. By Algorithm 2 we have that the

probability of sampling Zi is

pSample(zi = 1 | zn, · · · , zi+1)

=
pθ(

∑n
m=i zm = k − j + 1 |

∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

=
pθ(

∑n
m=i+1 zm = k − j | zi = 1,

∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

= pθ(zi = 1 |
∑n

m=i+1 zm = k − j,
∑

m zm = k)

The last line holds by Bayes’ theorem. It follows that sam-

ples drawn from Algorithm 2 are distributed according to

pθ(z |
∑

i zi = k).

C. Exact ELBO Computation

We will now present a formal proof on how to compute

the KL-divergence between the k-subset distribution and a

uniform distribution tractably and exactly.

Proposition 3. Let pθ (z |
∑

i zi = k) be a k-subset distri-

bution parameterized by θ and U(z) be a uniform distribu-

tion on the constrained space C = {z |
∑

i zi = k}. Then

the KL-divergence between distribution pθ (z |
∑

i zi = k)
and U(z) can be computed by

D(pθ(z |
∑

i

zi = k) || U(z)) = −H(z) + log

(

n

k

)

where H denotes the entropy of pθ (z |
∑

i zi = k).

Proof. By the definition of KL divergence, it holds that

D(pθ(z |
∑

i

zi = k) || U(z))

=
∑

z∈C

pθ(z |
∑

i

zi = k) · log
pθ(z |

∑

i zi = k)

U(z)

= (
∑

z∈C

pθ(z |
∑

i

zi = k) log pθ(z |
∑

i

zi = k))

−
∑

z∈C

pθ(z |
∑

i

zi = k) logU(z)

= −H(z) + log

(

n

k

)

.

The last equality holds since U(z) ≡ 1/
(

n
k

)

.

Algorithm 3 Entropy(θ, n, k)

Input: The logits θ of the distribution, the number of vari-

ables n, and the subset size k
Output: H(z) = −Ez∼pθ(z|

∑
i zi=k)[log p(z)]

h = zeros(n, k)
for i = k to n do

for j = 0 to k do

// p(zi |
∑i

m=1 zm = j)
p = a[i− 1, j − 1] ∗ pθi(zi = 1)/a[i, j]
// cf. proof of Prop. 4 in Appendix

h[i, j] = Hb(p) + p ∗ h[i− 1, j]+
(1− p) ∗ h[i− 1, j + 1]

return h

Proposition 4. Let Entropy be defined as in Algorithm 3.

Given variables, Z1, · · · , Zn, and a k-subset distribution

pθ(z |
∑

i zi = k) parameterized by θ, Algorithm 3 com-

putes entropy of pθ (z |
∑

i zi = k).

Proof. In a slight abuse of notation, let zn denote zn = 1,

and let z̄n denote zn = 0. Furthermore, we denote by

σk
n, σ

k
n−1 and σk−1

n−1 the events
∑n

i=0 = k,
∑n−1

i=0 = k and
∑n−1

i=0 = k − 1, respectively.

The entropy of the k-subset distribution is

H(Z) = −Ez∼pθ(z|σk
n)

[log p(z)]

= −
∑

z:σk
n

pθ(z | σk
n) log pθ(z | σk

n)

We start by simplifying the expression for pθ(z | σk
n),

where, by the chain rule , the above is

∑

z:σk
n

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n)

+ pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)
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Plugging the above in the expression for the entropy and

distributing the sum over the product, we get

H(Z) = −
∑

z:σk
n

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n)

· log
[

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)
]

+ pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)

· log
[

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)
]

,

where, since the two events z̄n and zn are mutually exclu-

sive, we can simplify the above to

H(Z) = −
∑

z:σk
n

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n)

· log
[

pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n)
]

+ pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)

· log
[

pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn)
]

.

Expanding the logarithms, rearranging terms, and using that

conditional probabilities sum to 1 we get

H(Z) = pθ(z̄n | σk
n) log pθ(z̄n | σk

n)

+ pθ(zn | σk
n) log pθ(zn | σk

n)

+ pθ(z̄n | σk
n) · pθ(σ

k
n−1 | σk

n, z̄n) log pθ(σ
k
n−1 | σk

n, z̄n)

+ pθ(zn | σk
n) · pθ(σ

k−1
n−1 | σk

n, zn) log pθ(σ
k−1
n−1 | σk

n, zn)

= −Ezn∼pθ(zn|σk
n)

[

− log pθ(zn | σk
n)
]

+

Ezn∼pθ(zn|σk
n)

[

H(Z:n−1|σ
k
n, zn)

]

= Hb(Zn | σk
n) + Ezn∼pθ(zn|σk

n)

[

H(Z:n−1|σ
k
n, zn)

]

.

That is, simply stated, the entropy of the k-subset distribu-

tion decomposes as the entropy of the constrained distribu-

tion over Zn, and average entropy of the distribution on the

remaining variables.

As the base case, the entropy of the k-subset distribution

when k = n is 0; there is only one way in which to pick

to choose n of n variables, and the k-subset distribution is

therefore deterministic.

D. Optimized Algorithms

Algorithm 4 is the optimized version of Algorithm 1, both

of which compute the marginal probability of the exactly-k
constraint. Algorithm 5 is the optimized version of Algo-

rithm 2, both of which sample faithfully from the k-subset

distribution.

Algorithm 4 PrExactlyk(θ, l, u, k)

Input: The logits θ of the distribution, range of variable

indices [l, u], and the subset size k
Output: The exact marginal probability of variables sum-

ming up to k, P (
∑u

i=l Xi = k)
if l > u then return 0
if l = u then return pθ(Xl = k)
for m = 0 to k do

pm = PrExactlyk(θ, l, ⌊u/2⌋,m)∗
PrExactlyk(θ, ⌊u/2⌋+ 1, u, k −m)

return
∑k

m=0 pm

Algorithm 5 Sample(θ, l, u, k)

Input: The logits θ of the distribution, range of variable

indices [l, u], and the subset size k
Output: A sample z = (z1, . . . , zn) from pθ(z |

∑

i zi =
k)
define p(x = m) = pm, m = 0, · · · , k
// with pm as defined in Algorithm 4

sample m∗ from p
zl:⌊u/2⌋ = Sample(θ, l, ⌊u/2⌋,m∗)
z⌊u/2⌋+1:u = Sample(θ, ⌊u/2⌋+ 1, u, k −m∗)
return Concat(zl:⌊u/2⌋, z⌊u/2⌋+1:u)

E. Experimental Details

E.1. Synthetic Experiments

In this experiment we analyzed the behavior of various

discrete gradient estimators for the k-subset distribution. We

were interested in three different metrics: the bias of the the

gradients estimators, the variance of the gradient estimators,

as well as the average deviation of each estimated gradient

from the exact gradient. We used cosine distance, defined

as 1− cosine similarity as our measure of distance, as we

typically care about the direction, not the magnitude of the

gradient; the latter can be recovered using an appropriate

learning rate. Following Niepert et al. (2021), we chose

a tractable 5-subset distribution, where n = 10, and were

therefore limited to
(

10
5

)

= 252 possible subsets. We set

the loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[∥z − b∥2], where b

is the groundtruth logits sampled from N (0, I). We used a

sample size of 10000 to estimate each of our metrics.

E.2. Discrete Variational Auto-Encoder

We tested our SIMPLE gradient estimator in the discrete

k-subset Variational Auto-Encoder (VAE) setting, where

the latent variables model a probability distribution over

k-subsets, and has a dimensionality of 20. The experimental

setup is similar to those used in prior work on the Gumbel

9
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Algorithm 6 The proposed algorithm for the k-subset distribution

function FORWARDPASS(θ)

// pθ(
∑i

m=1 zm = j) for all i, j
a = PrExactlyk(θ, n, k)
// Sample from pθ(z |

∑

i zi = k)
z = Sample(θ, n, k)
save a for the backward pass

return z

function BACKWARDPASS(∇zℓ(fu(z,x),y))
load θ from the forward pass

// Derivatives of pθ(z |
∑

i zi = k)
µ = ∇θ log a[n, k] // by auto-diff

// Return the directional derivative of the

// marginals along the downstream gradients

return JVP(µ,∇zℓ(fu(z,x))

softmax tricks (Jang et al., 2017) and IMLE (Niepert et al.,

2021) The encoding and decoding functions of the VAE

consist of three dense layers (encoding: 512-256-20x20;

decoding: 256-512-784). As is commonplace in discrete

VAEs, the loss is the sum of the reconstruction loss (binary

cross-entropy loss on output pixels) and KL divergence

of the k−subset distribution and the uniform distribution,

known as the evidence lower bound, or the ELBO. The

task being to learn a sparse generative model of MNIST.

As in prior work, we use a batch size of 100 and train for

100 epochs, plotting the test loss after each epoch. We use

the standard Adam settings in Tensorflow 2.x, and do not

employ any learning rate scheduling. The encoder network

consists of an input layer with dimension 784 (we flatten

the images), a dense layer with dimension 512 and ReLu

activation, a dense layer with dimension 256 and ReLu

activation, and a dense layer with dimension 400(20× 20)
which outputs θ and no non-linearity SIMPLE takes θ as

input and outputs a discrete latent code of size 20× 20. The

decoder network, which takes this discrete latent code as

input, consists of a dense layer with dimension 256 and

ReLu activation, a dense layer with dimension 512 and

ReLu activation, and finally a dense layer with dimension

784 returning the logits for the output pixels. Sigmoids are

applied to these logits and the binary cross-entropy loss is

computed. To obtain the best performing model of each of

the compared methods, we performed a grid search over

the learning rate in the range [1× 10−3, 5× 10−4], λ in the

range [1× 10−3, 1× 10−2, 1× 10−1, 1× 100, 1× 101, 1×
102, 1× 103], and for SoG I-MLE, the temparature τ in the

range [1× 10−1, 1× 100, 1× 101, 1× 102]

E.3. Learning to Explain

The BEERADVOCATE dataset (McAuley et al., 2012) con-

sists of free-text reviews and ratings for 4 different aspects

of beer: appearance, aroma, palate, and taste. The training

set has 80k reviews for the aspect APPEARANCE and 70k

reviews for all other aspects. The maximum review length

is 350 tokens. We follow Niepert et al. (2021) in computing

10 different evenly sized validation/test splits of the 10k

held out set and compute mean and standard deviation over

10 models, each trained on one split. In addition to the

ratings for all reviews, each sentence in the test set contains

annotations of the words that best describe the review score

with respect to the various aspects. Following the experi-

mental setup of recent work (Paulus et al., 2020; Niepert

et al., 2021), we address the problem introduced by the L2X

paper (Chen et al., 2018) of learning a k-subset distribution

over words that best explain a given aspect rating. Subset

precision was computed using a set of 993 annotated re-

views. We use pre-trained word embeddings from (Lei et al.,

2016)† We use the standard neural network architecture

from prior work Chen et al. (2018); Paulus et al. (2020) with

4 convolutional and one dense layer. This neural network

outputs the parameters θ of the k-subset distribution over

k-hot binary latent masks with k ∈ {5, 10, 15}. We train for

20 epochs using the standard Adam settings in Tensorflow

2.x, and no learning rate schedule. We always evaluate the

model with the best validation MSE among the 20 epochs.

F. Connection to Straight-Through

Gumbel-Softmax

Exact ST Gumbel Softmax SIMPLE
0.00
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0.04

0.06

0.000
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0.075

0.100
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Figure 3: Bias and variance of SIMPLE and Gumbel Softmax

One might wonder if our gradient estimator reduces to

the Straight-Through (ST) Gumbel-Softmax estimator, or

relates to it in any way when k = 1. On the forward

pass, the ST Gumbel Softmax estimator makes use of

the Gumbel-Max trick (Maddison et al., 2014), which

states that we can efficiently sample from a categorical

distribution by perturbing each of the logits with stan-

dard Gumbel noise, and taking the MAP, or more formally

z = OneHot(argmaxi∈{1,...,k} θi + gi) ∼ pθ where the

gi’s are i.i.d Gumbel(0, 1) samples, and OneHot encodes

†http://people.csail.mit.edu/taolei/beer/.
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the sample as a binary vector.

Since argmax is non-differentiable, Gumbel-Softmax uses

the perturbed relaxed samples, y = Softmax(θ + gi)
as a proxy for discrete samples z on the backward

pass, using differentiable Softmax in place of the non-

differentiable argmax, with the entire function returning

(z−y). detach()+y where detach ensures that the gradient

flows only through the relaxed samples on the backward.

That is, just like SIMPLE, ST Gumbel-Softmax returns exact,

discrete samples. However, whereas SIMPLE backpropa-

gates through the exact marginals, ST Gumbel Softmax

backpropagates through the perturbed marginals that result

from applying the Gumbel-max trick. As can be seen in

Figure 3, such a minor difference means that, empirically,

SIMPLE exhibits lower bias and variance compared to ST

Gumbel Softmax while being exactly as efficient.

F.1. Sparse Linear Regression

Given a library of feature functions, the task of sparse linear

regression aims to learn from data which feature subset best

describes the nonlinear partial differential equation (PDE)

that the data are sampled from. We propose to tackle this

task by learning a k-subset distribution over the feature

functions. During learning, we first sample from the k-

subset distribution to decide which feature function subset

to choose. With k chosen features, we perform linear re-

gression to learn the coefficients of the features from data,

and then update the k-subset distribution logit parameters

by minimizing RMSE.

To test our proposed approach, we follow the experimental

setting in PySINDy (de Silva et al., 2020; Kaptanoglu et al.,

2022) and use the dataset collected by PySINDy where the

samples are collected from the Kuramoto–Sivashinsky (KS)

equation, a fourth-order nonlinear PDE known for its chaotic

behavior. This PDE takes the form vt = −vxx−vxxxx−vvx,

which can be seen as a linear combination of feature func-

tions V = {vxx, vxxxx, vvx} with the coefficients all set to

a value of −1. At test time, we use the MAP estimation

of the learned k-subset distribution to choose the k feature

functions. For k = 3, our proposed method achieves the

same performance as the state-of-the-art solver on this task,

PySINDy. It identifies the KS PDE from data by choosing

exactly the ground truth feature function subset V , with

RMSE 0.00622 after applying linear regression on V .

G. Complexity Analysis

In Proposition 1, we prove that computing the marginal prob-

ability of the exactly-k constraint can be done tractably in

time O(nk). In the context of deep learning, we often care

about vectorized complexity. We demonstrate an optimized

algorithm achieving a vectorized complexity O(log k log n),

assuming perfect parallelization. The optimization is possi-

ble by computing the marginal probability in a divide-and-

conquer way: it partitions the variables into two subsets and

compute their marginals respectively such that the complex-

ity O(n) is reduced to O(log n); the summation over the k
terms also has its complexity reduced to O(log k) in a simi-

lar manner. We refer the readers to Algorithm 4 in Appendix

for the optimized algorithm. We further modify Algorithm 2

to perform divide-and-conquer such that sampling k-subsets

achieves a vectorized complexity being O(log n), shown

as Algorithm 5 in the Appendix. As a comparison, Soft-

Sub (Xie & Ermon, 2019) has a complexity O(nk) due to

the relaxed top-k operation and its vectorized complexity to

be O(k log n) stemming from the fact that softmax layers

need O(log n) rounds of communication for normalization.

H. Related Work

There is a large body of work on gradient estimation for cate-

gorical random variables. Maddison et al. (2017); Jang et al.

(2017) propose the Gumbel-softmax distribution (named the

concrete distribution by the former) to relax categorical ran-

dom variables. For more complex distributions, such as the

k-subset distribution which we are concerned with in this pa-

per, existing approaches either use the straight-through and

score function estimators or propose tailor-made relaxations

(see for instance (Kim et al., 2016; Chen et al., 2018; Grover

et al., 2018)). We directly compare to the score function and

straight-through estimator as well as the tailored relaxations

of (Chen et al., 2018; Grover et al., 2018) and show that we

are competitive and obtain a lower bias and/or variance than

these other estimators. Tucker et al. (2017) and Grathwohl

et al. (2018) develop parameterized control variates based

on continuous relaxations for the score-function estimator.

Lastly, Paulus et al. (2020) offers a comprehensible work on

relaxed gradient estimators, deriving several extensions of

the softmax trick. All of the above works, ours included, as-

sume the independence of the selected items, beyond there

being k of them. That is with the exception of (Paulus et al.,

2020) which make use of a relaxation using pairwise em-

beddings, but do not make their code available. We leave

that to future work.

A related line of work has developed and analyzed sparse

variants of the softmax function, motivated by their poten-

tial computational and statistical advantages. Represen-

tative examples are (Blondel et al., 2020a; Peters et al.,

2019; Correia et al., 2019; Martins & Astudillo, 2016).

SparseMAP (Niculae et al., 2018) has been proposed in

the context of structured prediction and latent variable mod-

els, also replacing the softmax with a sparser distribution.

LP-SparseMAP (Niculae & Martins, 2020) is an extension

that uses a relaxation of the optimization problem rather

than a MAP solver. Sparsity can also be exploited for effi-
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cient marginal inference in latent variable models (Correia

et al., 2020). Contrary to our work, they cannot control

the sparsity level exactly through a k-subset constraint or

guarantee a sparse output. Also, we aim at cases where

samples in the forward pass are required.

Integrating specialized discrete algorithms into neural net-

works is a line of research with increasing popularity. Ex-

amples are sorting algorithms (Cuturi et al., 2019; Blondel

et al., 2020b; Grover et al., 2018), ranking (Rolinek et al.,

2020; Kool et al., 2019), dynamic programming (Mensch

& Blondel, 2018; Corro & Titov, 2019), and solvers for

combinatorial optimization problems (Berthet et al., 2020;

Rolínek et al., 2020; Shirobokov et al., 2020; Niepert et al.,

2021; Minervini et al., 2023; Zeng et al., 2021) or even prob-

abilistic circuits over structured output spaces, either as hard

constraints (Ahmed et al., 2022b; Blondel, 2019), or soft

constraints (Xu et al., 2018; Manhaeve et al., 2018; Ahmed

et al., 2021; 2022a;c; 2023). There has also been work on

making common programming language expression such as

conditional statements, loops, and indexing differentiable

through relaxations (Petersen et al., 2021). Xie et al. (2020)

propose optimal transport as a way to obtain differentiable

sorting methods for top-k classification. In contrast, we

focus on the k-subset sampling problem and provide ex-

act discrete sampling and marginal inference algorithms,

obtaining a gradient estimator for the k-subset distribution

with a favorable bias-variance trade-off. Besides the discrete

constraints we consider in this work, probabilistic inference

over hybrid constraints that involve both discrete and contin-

uous variables remains an active topic (Belle et al., 2015b;a;

Zeng & Van den Broeck, 2019; Kolb et al., 2019; Zeng

et al., 2020a) whose tractability is studied and leveraged for

building inference algorithms with applications in Bayesian

deep learning (Zeng et al., 2021; 2020b; Zeng & Broeck,

2023).

I. Conclusion

We introduced a gradient estimator for the k-subset distri-

bution which replaces relaxed and approximate sampling

on the forward pass with exact sampling. It sidesteps the

non-differentiable nature of discrete sampling by estimating

the gradients as a function of our distribution’s marginals,

for which we prove a simple characterization, showing that

we can compute them exactly and efficiently. We demon-

strated improved empirical results on a number of tasks:

L2X, DVAEs, and sparse regression.
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