
Dilated Convolution with Learnable Spacings: beyond bilinear interpolation

Ismail Khalfaoui-Hassani 1 2 Thomas Pellegrini 1 3 Timothée Masquelier 2

Abstract

Dilated Convolution with Learnable Spacings

(DCLS) is a recently proposed variation of the di-

lated convolution in which the spacings between

the non-zero elements in the kernel, or equiva-

lently their positions, are learnable. Non-integer

positions are handled via interpolation. Thanks to

this trick, positions have well-defined gradients.

The original DCLS used bilinear interpolation,

and thus only considered the four nearest pixels.

Yet here we show that longer range interpolations,

and in particular a Gaussian interpolation, allow

improving performance on ImageNet1k classifi-

cation on two state-of-the-art convolutional ar-

chitectures (ConvNeXt and ConvFormer), with-

out increasing the number of parameters. The

method code is based on PyTorch and is available

at github.com/K-H-Ismail/Dilated-Convolution-

with-Learnable-Spacings-PyTorch.

1. Introduction

Dilated Convolution with Learnable Spacings (DCLS) is

an innovative convolutional method whose effectiveness

in computer vision was recently demonstrated (Khalfaoui-

Hassani et al., 2023). In DCLS, the positions of the

non-zero elements within the convolutional kernels are

learned in a gradient-based manner. The challenge of non-

differentiability caused by the integer nature of the positions

is addressed through the application of bilinear interpo-

lation. By doing so, DCLS enables the construction of a

differentiable convolutional kernel.

DCLS is a differentiable method that only constructs the

convolutional kernel. To implement the whole convolution,

one can utilize either the native convolution provided by

1Artificial and Natural Intelligence Toulouse Institute (ANITI)
2CerCo UMR 5549, CNRS, Université Toulouse III, Toulouse,
France 3IRIT, CNRS, Toulouse INP, Université Toulouse III,
Toulouse, France. Correspondence to: Ismail Khalfaoui-Hassani
<ismail.khalfaoui-hassani@univ-tlse3.fr>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

PyTorch or a more efficient implementation such as the

“depthwise implicit gemm” convolution method proposed

by Ding et al. (2022), which is suitable for large kernels.

The primary motivation behind the development of DCLS

was to investigate the potential for enhancing the fixed grid

structure imposed by standard dilated convolution in an

input-independent way. By allowing an arbitrary number

of kernel elements, DCLS introduces a free tunable hyper-

parameter called the “kernel count”. Additionally, the “di-

lated kernel size” refers to the maximum extent to which

the kernel elements are permitted to move within the dilated

kernel (Fig. 1c). Both of these parameters can be adjusted

to optimize the performance of DCLS. The positions of

the kernel elements in DCLS are initially randomized and

subsequently allowed to evolve within the limits of the di-

lated kernel size during the learning process. The main

focus of this paper will be to question the choice of bi-

linear interpolation used by default in DCLS. We tested

several interpolations and found in particular that a Gaus-

sian interpolation with learnable standard deviations made

the approach more effective.

To evaluate the effectiveness of DCLS with Gaussian inter-

polation, we integrate it as a drop-in replacement for the

standard depthwise separable convolution in two state-of-

the-art convolutional models: the ConvNext-T model (Liu

et al., 2022) and the ConvFormer-S18 model (Yu et al.,

2022). In Section 5, we evaluate the training loss and the

classification accuracy of these models on the ImageNet1k

dataset (Deng et al., 2009). The remainder of this paper

will present a detailed analysis of the methods, equations,

algorithms and techniques regarding the application of the

Gaussian interpolation in DCLS.

2. Related work

In the field of convolutional neural networks (CNNs), vari-

ous approaches have been explored to improve the perfor-

mance and efficiency of convolutional operations. Gaussian

mixture convolutional networks have investigated the fit of

input channels with Gaussian mixtures (Celarek et al., 2022),

while Chen et al. (2023) utilized Gaussian masks in their

work. Additionally, continuous kernel convolution was stud-

ied in the context of image processing by Kim & Park (2023).

Their approach is similar to the linear correlation introduced

1

https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch
https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

-36 -24 -12

48 96 -48

12 24 36

0 1 2

0

1

2

(a)

-36 48 12

-24 96 24

-12 -48 36

0 2 4 6 8
0

2

4

6

8

(b)

-24 5 3
-12 2111 3 1

115
-11-5 20
-5-36432 4

-10 -27-13 2010
-2 -5-3 4 2

0 2 4 6 8
0

2

4

6

8

(c)

0 2 4 6 8
0

2

4

6

8

(d)

Figure 1. (a) a standard 3× 3 kernel. (b) a standard dilated 3× 3 kernel. (c) a 2D-DCLS kernel using bilinear interpolation with 9 kernel

elements and a kernel size of 9. (d) the same kernel as (c) with Gaussian interpolation. The numbers have been rounded in all figures and

omitted in (d) for readability.

in Thomas et al. (2019). The interpolation function used

in the last two works corresponds to the DCLS-Triangle

method described in 3.1. Romero et al. have also made

notable contributions in learning continuous functions that

map the positions to the weights (Romero et al., 2022a;b).

In the work by Jacobsen et al. (2016), the kernel is rep-

resented as a weighted sum of basis functions, including

centered Gaussian filters and their derivatives. Pintea et al.

(2021) extended this approach by incorporating the learning

of Gaussian width, effectively optimizing the resolution.

Shelhamer et al. (2019) introduced a kernel factorization

method where the kernel is expressed as a composition of a

standard kernel and a structured Gaussian one. In these last

three works the Gaussians are centered on the kernel.

Furthermore, the utilization of bilinear interpolation within

deformable convolution modules has already shown its

effectiveness. Dai et al. (2017), Qi et al. (2017) and re-

cently Wang et al. (2022) leveraged bilinear interpolation

to smoothen the non-differentiable regular-grid offsets in

the deformable convolution method. Even more recently, in

Kim et al. (2023), a Gaussian attention bias with learnable

standard deviations has been successfully used in the posi-

tional embedding of the attention module of the ViT model

(Dosovitskiy et al., 2021) and leads to reasonable gains on

ImageNet1k.

3. Methods

3.1. From bilinear to Gaussian interpolation

We denote by m ∈ N
∗ the number of kernel elements in-

side the dilated constructed kernel and we refer to it as

the “kernel count”. Moreover, we denote respectively by

sx, sy ∈ N
∗ × N

∗, the sizes of the constructed kernel along

the x-axis and the y-axis. The latter could be seen as the

limits of the dilated kernel, and we refer to them as the

“dilated kernel size”.

The sx × sy matrix space over R is defined as the set of all

sx × sy matrices over R, and is denotedMsx,sy (R). The

real numbers w, px, σx, py and σy respectively stand for

the weight, the mean position and standard deviation of that

weight along the x-axis (width) and its mean position and

standard deviation along the y-axis (height).

The mathematical construction of the 2D-DCLS kernel in

Khalfaoui-Hassani et al. (2023) relies on bilinear interpola-

tion and is described as follows :

f : R× R× R→Msx,sy (R)

w, px, py 7→ K
(1)

where ∀i ∈ J1 .. sxK, ∀j ∈ J1 .. syK :

Kij =























w (1− rx) (1− ry) if i = ⌊px⌋, j = ⌊py⌋
w rx (1− ry) if i = ⌊px⌋+ 1, j = ⌊py⌋
w (1− rx) ry if i = ⌊px⌋, j = ⌊py⌋+ 1

w rx ry if i = ⌊px⌋+1, j = ⌊py⌋+1
0 otherwise

(2)

and where the fractional parts are:

rx = {px} = px − ⌊px⌋ and ry = {py} = py − ⌊py⌋
(3)

An equivalent way of describing the constructed kernel K
in Equation 2 is:

Kij = w · g(px − i) · g(py − j) (4)

with

g : x 7→ max(0, 1− |x|) (5)

This expression corresponds to the bilinear interpolation as

described in Dai et al. (2017, eq. 4).

2

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

In fact, this last g function is known as the triangle function

(refer to Fig. 2 for a graphic representation), and is widely

used in kernel density estimation. From now on, we will

note it as

∀x ∈ R Λ(x)
def
= max(0, 1− |x|) (6)

First, we consider a scaling by a parameter σ ∈ R+ for the

triangle function (the bilinear interpolation corresponds to

σ = 1),

∀x ∈ R, ∀σ ∈ R+ Λσ(x)
def
= max(0, σ − |x|) (7)

We found that this scaling parameter σ could be learned

by backpropagation and that doing so increases the per-

formance of the DCLS method. As we have different σ
parameters for the x and y-axes in 2D-DCLS, learning the

standard deviations costs two additional learnable parame-

ters and two additional FLOPs (multiplied by the number of

the channels of the kernel and the kernel count). We refer

to the DCLS method with triangle function interpolation as

the DCLS-Triangle method.

Second, we tried a smoother function rather than the piece-

wise affine triangle function, namely the Gaussian function:

∀x ∈ R, ∀σ ∈ R
∗, Gσ(x)

def
= exp

(

−
x2

2σ2

)

(8)

We refer to the DCLS method with Gaussian interpolation as

the DCLS-Gauss method. In practice, instead of Equations

7 and 8, we respectively use:

∀x ∈ R, ∀σ ∈ R, Λσ0+σ(x) = max(0, σ0 + |σ| − |x|)
(9)

∀x ∈ R, ∀σ ∈ R, Gσ0+σ(x) = exp

(

−
1

2

x2

(σ0 + |σ|)2

)

(10)

with σ0 ∈ R
∗

+ a constant that determines the minimum

standard deviation that the interpolation could reach. For

the triangle interpolation, we take σ0 = 1 in order to have

at least 4 adjacent interpolation values (see Figure 1c). And

for the Gaussian interpolation, we set σ0 = 0.27.

Last, to make the sum of the interpolation over the dilated

kernel size equal to 1, we divide the interpolations by the

following normalization term :

A = ϵ+

sx
∑

i=1

sy
∑

j=1

Iσ0+σx(px − i) · Iσ0+σy (py − j) (11)

with I an interpolation function (Λ or G in our case) and

ϵ = 1e− 7 for example, to avoid division by zero.

Other interpolations Based on our tests, other functions

such as Lorentz, hyper-Gaussians and sinc functions have

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

Figure 2. 1D view of Gaussian and Λ functions with σ = 5.

been tested with no great success. In addition, learning a

correlation parameter ρ ∈ [−1, 1] or equivalently a rotation

parameter θ ∈ [0, 2π] as in the bivariate normal distribu-

tion density did not improve performance (maybe because

cardinal orientations predominate in natural images).

3.2. The 2D-DCLS-Gauss kernel construction algorithm

In the following, we describe with pseudocode the ker-

nel construction used in 2D-DCLS-Gauss and 2D-DCLS-

Triangle. I is the interpolation function (Λ or G in our case)

and ϵ = 1e − 7. In practice, w, px, py, σx and σy are 3-

D tensors of size (channels out, channels in //

groups, K count), but the algorithm presented here is

easily extended to this case by applying it channel-wise.

Algorithm 1 2D-DCLS-interpolation kernel construction

Require: w, px, py , σx, σy : vectors of dimension m

Ensure: K : the constructed kernel, of size (sx × sy)

1: K ← 0sx,sy {zero tensor of size sx, sy}

2: for k = 0 to m− 1 do

3: H ← 0sx,sy
4: pxk ← pxk + sx//2; pyk ← pyk + sy//2

5: σx
k ← |σ

x
k |+ σI

0 ; σy
k ← |σ

y
k |+ σI

0

6: for i = 0 to sx − 1 do

7: for j = 0 to sy − 1 do

8: H[i, j]← Iσx
k
(pxk − i) ∗ Iσy

k
(pyk − j)

9: end for

10: end for

11: H[:, :]← H[:, :] /(ϵ+
sx−1
∑

i=0

sy−1
∑

j=0

H[i, j])

12: K ← K +H ∗ wk

13: end for

3

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

Table 1. Classification accuracy on the validation set and training loss on ImageNet-1K. For the 17/34 bilinear, the 23/26 Triangle

and Gaussian cases, the results have been averaged over 3 distinct seeds (the corresponding lines are highlighted in yellow).

MODEL @ 224
KER. SIZE

/ COUNT
INTERPOLATION # PARAM. TRAIN LOSS TOP-5 ACC. TOP-1 ACC.

CONVNEXT-T ▨ 7
2 / 49 28.59M 2.828 96.05 82.08

CONVNEXT-T ▩ 17
2 / 34 BILINEAR 28.59M 2, 775 96.11 82.44

CONVNEXT-T ⊙ 23
2 / 26 TRIANGLE 28.59M 2.787 96.09 82.34

CONVNEXT-T ⋆ 23
2 / 26 GAUSSIAN 28.59M 2.762 96.18 82.44

CONVNEXT-T 17
2 / 26 GAUSSIAN 28.59M 2.773 96.17 82.40

CONVNEXT-T 23
2 / 34 GAUSSIAN 28.69M 2.758 96.22 82.60

CONVFORMER-S18 ▨ 7
2 / 49 26.77M 2.807 96.17 82.84

CONVFORMER-S18 ▩ 17
2 / 40 BILINEAR 26.76M 2.764 96.42 83.14

CONVFORMER-S18 ⊙ 23
2 / 26 TRIANGLE 26.76M 2.761 96.38 83.09

CONVFORMER-S18 ⋆ 23
2 / 26 GAUSSIAN 26.76M 2.747 96.31 82.99

Figure 3. Training loss for ConvNeXt-T and ConvFormer-S18

models with DCLS according to interpolation type (lower is better).

The pairwise p-values have been calculated using an independent

two-sample Student t-test assuming equal variances. The vertical

line segments stand for the standard errors.

4. Learning techniques

Having discussed the implementation of the interpolation in

the DCLS method, we now shift our focus to the techniques

employed to maximize its potential. We retained most of

the techniques used in Khalfaoui-Hassani et al. (2023), and

suggest new ones for learning standard deviations parame-

ters. In Appendix C, we present the training techniques that

have been selected based on consistent empirical evidence,

yielding improved training loss and validation accuracy.

5. Results

We took two recent state-of-the-art convolutional architec-

tures, ConvNeXt and ConvFormer, and drop-in replaced all

the depthwise convolutions by DCLS ones, using the three

different interpolations (bilinear, triangle or Gauss). Table 1

reports the results in terms of training loss and validation

accuracy.

A first observation is that all the DCLS models perform

much better than the baselines, whereas they have the same

number of parameters. There are also subtle differences

between interpolation functions. As Figure 3 shows, trian-

gle and bilinear interpolations perform similarly, but the

Gaussian interpolation performs significantly better.

Furthermore, the advantage of the Gaussian interpolation

w.r.t. bilinear is not only due to the use of a larger kernel, as a

17x17 Gaussian kernel (5th line in Table 1) still outperforms

the bilinear case (2nd line). Finally, the 6th line in Table 1

shows that there is still room for improvement by increasing

the kernel count, although this slightly increases the number

of trainable parameters w.r.t. the baseline.

6. Conclusion

In conclusion, this study introduces Gaussian and Λ inter-

polation methods as alternatives to bilinear interpolation

in Dilated Convolution with Learnable Spacings (DCLS).

Evaluations on state-of-the-art convolutional architectures

demonstrate that Gaussian interpolation improves perfor-

mance of image classification task on ImageNet1k without

increasing parameters. Future work could implement the

Whittaker-Shannon interpolation instead of the Gaussian

interpolation and search for a dedicated architecture, that

will make the most of DCLS.

4

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

Acknowledgments

This work was performed using HPC resources from

GENCI–IDRIS (Grant 2021-[AD011013219]). Support

from the ANR-3IA Artificial and Natural Intelligence

Toulouse Institute is gratefully acknowledged. We would

also like to thank the region of Toulouse Occitanie.

References

Celarek, A., Hermosilla, P., Kerbl, B., Ropinski, T., and

Wimmer, M. Gaussian mixture convolution networks. In

International Conference on Learning Representations,

2022.

Chen, Q., Li, C., Ning, J., and He, K. Gaussian mask

convolution for convolutional neural networks. arXiv

preprint arXiv:2302.04544, 2023.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and

Wei, Y. Deformable convolutional networks. In Int. Conf.

Comput. Vis., pp. 764–773, 2017.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.

In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog.

(CVPR), pp. 248–255. IEEE, 2009.

Ding, X., Zhang, X., Han, J., and Ding, G. Scaling up your

kernels to 31x31: Revisiting large kernel design in CNNs.

In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog.

(CVPR), pp. 11963–11975, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. In

International Conference on Learning Representations,

2021.

Jacobsen, J.-H., Van Gemert, J., Lou, Z., and Smeulders,

A. W. Structured receptive fields in cnns. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2610–2619, 2016.

Khalfaoui-Hassani, I., Pellegrini, T., and Masquelier, T.

Dilated convolution with learnable spacings. In The

Eleventh International Conference on Learning Repre-

sentations, 2023. URL https://openreview.net

/forum?id=Q3-1vRh3HOA.

Kim, B. J., Choi, H., Jang, H., and Kim, S. W. Understand-

ing gaussian attention bias of vision transformers using ef-

fective receptive fields. arXiv preprint arXiv:2305.04722,

2023.

Kim, S. and Park, E. Smpconv: Self-moving point repre-

sentations for continuous convolution. arXiv preprint

arXiv:2304.02330, 2023.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,

and Xie, S. A convnet for the 2020s. In Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recog. (CVPR), pp. 11976–

11986, 2022.

Pintea, S. L., Tömen, N., Goes, S. F., Loog, M., and van

Gemert, J. C. Resolution learning in deep convolutional

networks using scale-space theory. IEEE Transactions

on Image Processing, 30:8342–8353, 2021.

Qi, H., Zhang, Z., Xiao, B., Hu, H., Cheng, B., Wei, Y.,

and Dai, J. Deformable convolutional networks–coco

detection and segmentation challenge 2017 entry. In

Proc. ICCV COCO Challenge Workshop, volume 15, pp.

1, 2017.

Romero, D. W., Bruintjes, R., Bekkers, E. J., Tomczak,

J. M., Hoogendoorn, M., and van Gemert, J. Flexconv:

Continuous kernel convolutions with differentiable kernel

sizes. In 10th International Conference on Learning

Representations, 2022a.

Romero, D. W., Kuzina, A., Bekkers, E. J., Tomczak, J. M.,

and Hoogendoorn, M. CKConv: Continuous kernel con-

volution for sequential data. In International Confer-

ence on Learning Representations, 2022b. URL https:

//openreview.net/forum?id=8FhxBtXSl0.

Shelhamer, E., Wang, D., and Darrell, T. Blurring the line

between structure and learning to optimize and adapt

receptive fields. arXiv preprint arXiv:1904.11487, 2019.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,

Goulette, F., and Guibas, L. J. Kpconv: Flexible and de-

formable convolution for point clouds. Int. Conf. Comput.

Vis., 2019.

Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu,

X., Lu, T., Lu, L., Li, H., et al. Internimage: Exploring

large-scale vision foundation models with deformable

convolutions. arXiv preprint arXiv:2211.05778, 2022.

Yu, W., Si, C., Zhou, P., Luo, M., Zhou, Y., Feng, J., Yan,

S., and Wang, X. Metaformer baselines for vision. arXiv

preprint arXiv:2210.13452, 2022.

5

https://openreview.net/forum?id=Q3-1vRh3HOA
https://openreview.net/forum?id=Q3-1vRh3HOA
https://openreview.net/forum?id=8FhxBtXSl0
https://openreview.net/forum?id=8FhxBtXSl0

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

A. Code and reproducibility

The code of the method is based on PyTorch and available at https://github.com/K-H-Ismail/Dilated-Convolution-with-

Learnable-Spacings-PyTorch.

B. Pytorch implementation of the 2D-DCLS-Gauss and 2D-DCLS-Triangle forward algorithm

1 class ConstructKernel2d(Module):

2 def __init__(self, out_channels, in_channels, groups, kernel_count,

dilated_kernel_size, version):

3 super().__init__()

4 self.version = version

5 self.out_channels, self.in_channels = out_channels, in_channels

6 self.groups = groups

7 self.dilated_kernel_size = dilated_kernel_size

8 self.kernel_count = kernel_count

9 self.IDX, self.lim = None, None

10

11 def __init_tmp_variables__(self, device):

12 if self.IDX is None or self.lim is None:

13 J = Parameter(torch.arange(0, self.dilated_kernel_size[0]),

14 requires_grad=False).to(device)

15 I = Parameter(torch.arange(0, self.dilated_kernel_size[1]),

16 requires_grad=False).to(device)

17 I = I.expand(self.dilated_kernel_size[0],-1)

18 J = J.expand(self.dilated_kernel_size[1],-1).t()

19 IDX = torch.cat((I.unsqueeze(0),J.unsqueeze(0)), 0)

20 IDX = IDX.expand(self.out_channels, self.in_channels//self.groups,

21 self.kernel_count,-1,-1,-1).permute(4,5,3,0,1,2)

22 self.IDX = IDX

23 lim = torch.tensor(self.dilated_kernel_size).to(device)

24 self.lim = lim.expand(self.out_channels,

25 self.in_channels//self.groups, self.kernel_count, -1).permute(3,0,1,2)

26 else:

27 pass

28

29 def forward_vtriangle(self, W, P, SIG):

30 P = P + self.lim // 2

31 SIG = SIG.abs() + 1.0

32 X = (self.IDX - P)

33 X = ((SIG - X.abs()).relu()).prod(2)

34 X = X / (X.sum((0,1)) + 1e-7) # normalization

35 K = (X * W).sum(-1)

36 K = K.permute(2,3,0,1)

37 return K

38

39 def forward_vgauss(self, W, P, SIG):

40 P = P + self.lim // 2

41 SIG = SIG.abs() + 0.27

42 X = ((self.IDX - P) / SIG).norm(2, dim=2)

43 X = (-0.5 * X**2).exp()

44 X = X / (X.sum((0,1)) + 1e-7) # normalization

45 K = (X * W).sum(-1)

46 K = K.permute(2,3,0,1)

47 return K

48

49 def forward(self, W, P, SIG):

50 self.__init_tmp_variables__(W.device)

51 elif self.version == 'triangle':

52 return self.forward_vtriangle(W, P, SIG)

53 elif self.version == 'gauss':

54 return self.forward_vgauss(W, P, SIG)

55 else:

56 raise

6

https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch
https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch

Dilated Convolution with Learnable Spacings: beyond bilinear interpolation.

C. Learning techniques

• Weight decay: No weight decay was used for positions. We apply the same for standard deviation parameters.

• Positions and standard deviations initialization: position parameters were initialized following a centered normal law

of standard deviation 0.5. Standard deviation parameters were initialized to a constant 0.23 in DCLS-Gauss and to 0 in

DCLS-Triangle in order to have a similar initialisation to DCLS with bilinear interpolation at the beginning.

• Positions clamping : Previously in DCLS, kernel elements that reach the dilated kernel size limit were clamped. It turns

out that this operation is no longer necessary with the Gauss and Λ interpolations.

• Dilated kernel size tuning: When utilizing bilinear interpolation in ConvNeXt-dcls, a dilated kernel size of 17 was

found to be optimal, as larger sizes did not yield improved accuracy. However, with Gaussian and Λ interpolations, there

appears to be no strict limit to the dilated kernel size. Accuracy tends to increase logarithmically as the size grows, with

improvements observed up to kernel sizes of 51. It is important to note that increasing the dilated kernel size does not

impact the number of trainable parameters, but it does affect throughput. Therefore, a compromise between accuracy and

throughput was achieved by setting the dilated kernel size to 23.

• Kernel count tuning: This hyper-parameter has been configured to the maximum integer value while still remaining

below the baselines to which we compare ourselves in terms of trainable parameters. It is worth noting that each additional

element in the 2D-DCLS-Gauss or 2D-DCLS-Triangle methods introduces five more learnable parameters: weight,

vertical and horizontal position, and their respective standard deviations. To maintain simplicity, the same kernel count

was applied across all model layers.

• Learning rate scaling: To maintain consistency between positions and standard deviations, we applied the same learning

rate scaling ratio of 5 to both. In contrast, the learning rate for weights remained unchanged.

• Synchronizing positions: we shared the kernel positions and standard deviations across convolution layers with the same

number of parameters, without sharing the weights. Parameters in these stages were centralized in common parameters

that accumulate the gradients.

D. 1D and 3D convolution cases

For the 3D case, Equation 4 can be generalized as a product along spatial dimensions. We denote respectively by

sx, sy, sz ∈ N
∗ × N

∗ × N
∗, the sizes of the constructed kernel along the x-axis, the y-axis and the z-axis. The constructed

kernel tensor K3D ∈Msx,sy,sz (R) is therefore:

∀i ∈ J1 .. sxK, ∀j ∈ J1 .. syK, ∀k ∈ J1 .. szK :

K3D
ijk = w · Iσ0+σx(px − i) · Iσ0+σy (py − j) · Iσ0+σz (pz − k) (12)

with I an interpolation function (Λ or G), σ0 = 1 for the Λ interpolation and σ0 = 0.27 for the Gaussian one. w, px, σx, py ,

σy , pz and σz respectively representing the weight, the mean position and standard deviation of that weight along the x-axis

(width), the mean position and standard deviation along the y-axis (height) and its mean position and standard deviation

along the z-axis (depth).

The constructed kernel vector K1D ∈ R
sx for the 1D case is simply:

∀i ∈ J1 .. sxK :
K1D

i = w · Iσ0+σx(px − i) (13)

The Algorithm 1 as well as the Pytorch code B are readily adapted to these cases by following the above note.

7

