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Abstract

Message-passing graph neural networks

(MPNNs) emerged as powerful tools for pro-

cessing graph-structured input. However, they

operate on a fixed graph structure, ignoring

potential noise and missing information. In

addition, due to their purely local aggregation

mechanism, they are susceptible to phenomena

such as over-smoothing, over-squashing, or

under-reaching. Hence, devising principled

approaches for learning to focus on graph

structure relevant to the given prediction task

remains an open challenge. In this work, lever-

aging recent progress in differentiable k-subset

sampling, we devise a novel task-adaptive graph

rewiring approach, which learns to add relevant

edges while omitting less beneficial ones. We

empirically demonstrate on synthetic datasets

that our approach effectively alleviates the

issues of over-squashing and under-reaching. In

addition, on established real-world datasets, we

demonstrate that our method is competitive or su-

perior to conventional MPNN models and graph

transformer architectures regarding predictive

performance and computational efficiency.

1. Introduction

Graph-structured data is widespread across several ap-

plication domains, including chemo- and bioinformat-

ics (Barabasi & Oltvai, 2004; Reiser et al., 2022), com-

binatorial optimization (Cappart et al., 2023), and social-

network analysis (Easley & Kleinberg, 2010), underlining

the importance of machine learning methods tailored to

graphs. In recent years, message-passing graph neural net-
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works (MPNNs) (Gilmer et al., 2017; Scarselli et al., 2009)

emerged as the dominant paradigm in this area. However,

due to their purely local aggregation mechanism, MPNNs

are inherently biased towards encoding local structure and

unable to capture global or long-range information, often

linked to phenomena such as under-reaching (Barceló et al.,

2020) or over-squashing (Alon & Yahav, 2021), with the

latter being heavily investigated in recent works.

Concretely, the issue of over-squashing, as detailed in Alon

& Yahav (2021), refers to the excessive compression of

information from distant nodes due to a source node’s ex-

tensive receptive field, occurring when too many layers are

stacked. Recent works aim to alleviate over-squashing by re-

sorting to graph rewiring, i.e., adding edges between distant

nodes to make the exchange of information more accessible.

Theoretically, Topping et al. (2021); Bober et al. (2022)

investigated over-squashing through the lens of Ricci and

Forman curvature. Refining Topping et al. (2021), Di Gio-

vanni et al. (2023) analyzed how the architectures’ width and

graph structure contribute to the over-squashing problem,

showing that over-squashing happens among nodes with

high commute time, stressing the importance of rewiring

techniques. In addition, Deac et al. (2022) utilized ex-

pander graphs to enhance message passing and connectiv-

ity, while Karhadkar et al. (2022) resort to spectral tech-

niques, and Banerjee et al. (2022) proposed a greedy ran-

dom edge flip approach to overcome over-squashing. Many

studies have suggested different versions of multi-hop-

neighbor-based message passing to maintain long-range

dependency (Abboud et al., 2022; Abu-El-Haija et al., 2019;

Gasteiger et al., 2019; Gutteridge et al., 2023; Xue et al.,

2023), which can as well be interpreted as a heuristic

rewiring scheme. The above works indicate that graph

rewiring is an effective strategy to mitigate over-squashing.

Different from the above, graph transformers (Dwivedi et al.,

2022b; He et al., 2022; Müller et al., 2023; Rampášek et al.,

2022; Chen et al., 2022) and similar global attention mech-

anisms (Liu et al., 2021; Wu et al., 2022) marked a shift

from local to global message passing, aggregating over all

nodes. While not understood in a principled way, empirical

studies indicate that graph transformers possibly alleviate

over-squashing; see, e.g., Müller et al. (2023). However, due
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Figure 1. Our sampling scheme. The upstream model extracts edge

priors θ from the initial graph, which are forwarded to a sampling

module. After sampling, we obtain N rewired graphs processed

by a downstream model. The pipeline is end-to-end trainable.

to their global aggregation mode, computing an attention

matrix with n2 entries for an n-order graph makes them

applicable only to small or mid-sized graphs. Further, to

capture non-trivial graph structure, they need to resort to

hand-engineered positional or structural encodings.

In summary, most approaches for circumventing over-

squashing either resort to heuristic rewiring approaches,

possibly not adapting to the given prediction task, or com-

putational heavy global attention mechanisms.

Present Work. By leveraging recent progress in differen-

tiable k-subset sampling, we derive task-adaptive graph

rewiring. Concretely, we utilize an upstream model to learn

prior scores for candidate edges. We then utilize the scores

to parameterize a probability distribution constraint by so-

called k-subset constraints. Subsequently, we sample mul-

tiple k-edge adjacency matrices from this distribution and

process them using a downstream model, typically a GNN,

for the final predictions task. To make this pipeline trainable

via gradient descent, we adapt recently proposed discrete

gradient estimation and tractable sampling techniques (Xie

& Ermon, 2019; Niepert et al., 2021; Ahmed et al., 2023).

We empirically demonstrate on synthetic datasets that our

approach effectively alleviates the issues of over-squashing

and under-reaching. In addition, on established real-world

datasets, we establish that our method is competitive or

superior to conventional MPNN models and graph trans-

former architectures regarding predictive performance and

computational efficiency.

2. Probabilistic Data-driven Graph Rewiring

Here, we outline our task-adaptive graph rewiring approach

based on recent advancements in discrete gradient estima-

tion and tractable sampling techniques (Ahmed et al., 2023;

Niepert et al., 2021; Xie & Ermon, 2019).

Let An denote the set of adjacency matrices of graphs on n
nodes. Further, let G be a graph with V (G) := {1, . . . , n},

an adjacency matrix A(G) ∈ An, and node attribute matrix

X ∈ R
n×d for d > 0. That is, each row in the matrix X

corresponds to a node’s initial feature in the graph G. Our

task-adaptive graph rewiring maintains a (parameterized)

upstream model hv : An × R
n×d → Θ, typically a neural

network, parameterized by v, mapping an adjacency matrix

and corresponding node attributes to unnormalized edge

priors θ ∈ Θ ⊆ R
n×n.

In the following, we use the priors θ as parameters of a

probability distribution,

pθ(A(G)) :=
n
∏

i,j=1

pθij (A(G)ij),

where pθij (A(G)ij = 1) = sigmoid(θij) and

pθij (A(G)ij = 0) = 1− sigmoid(θij). Unlike prior prob-

abilistic rewiring approaches (Franceschi et al., 2019), we

introduce dependencies between the graph’s edges by condi-

tioning the distribution pθij (A(G)) on a k-subset constraint.

That is, the probability of sampling any given k-edge adja-

cency matrix A(G), becomes

p(θ,k)(A(G)) :=

{

pθ(A(G))/Z if ∥A(G)∥1 = k,
0 otherwise,

where

Z :=
∑

B∈An : ∥B∥1=k

pθ(B).

The original graph is now rewired into a new adjacency ma-

trix Ā by combining N samples A(i) ∼ p(θ,k)(A(G)) for

i ∈ [N ] together with the original adjacency matrix A(G)

using a differentiable aggregation function g : A
(N+1)
n →

An, i.e., Ā := g(A(G),A(1), . . . ,A(N)) ∈ An. In prac-

tice, we rewire our graphs by sampling two adjacency

matrices for deleting edges and adding new edges, i.e.,

g(A,A(1),A(2)) := (A(G) − A(1)) + A(2) where A(1)

and A(2) are two sampled adjacency matrices with a pos-

sibly different number of edges, respectively. Finally, the

rewired adjacency matrix is used in a downstream model

fu : An×R
n×d → Y , typically an MPNN, with parameters

u and Y the prediction target set.

Learning to Sample. Given a graph G with adjacency

matrix A(G) ∈ An and attribute matrix X ∈ R
n×d, we are

now concerned with learning the parameters ω = (v,u) of

the architecture through minimizing the expected loss

L(A(G),X, y;ω) := EA(i)∼p(θ,k)(A(G)) [L] ,

where

L = ℓ
(

fu

(

g
(

A(G),A(1), . . . ,A(N)
)

,X
)

, y
)
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with y ∈ Y , ℓ a point-wise loss such as the cross-entropy or

MSE, and θ = hv(A(G),X).

For minimizing the above expectation using gradient de-

scent and backpropagation, we need to efficiently sample

from p(θ,k) and estimate the gradients regarding the param-

eters θ. Here, we adapt recently proposed discrete gradient

estimation and tractable sampling techniques (Xie & Ermon,

2019; Niepert et al., 2021; Ahmed et al., 2023).

Sampling. To sample an adjacency matrix A(G) from the

distribution p(θ,k)(A(G)) conditioning on the k-edge con-

straint, and further to allow the sampling to be trained end-

to-end, we investigate the use of three recently proposed gra-

dient estimators in our pipeline, SOFTSUB (Xie & Ermon,

2019), I-MLE (Niepert et al., 2021), and SIMPLE (Ahmed

et al., 2023). Concretely, SOFTSUB extends the Gumbel-

Softmax trick to sample a relaxed k-subset amenable to

auto-differentiation on the backward pass, with its complex-

ity being O(n2k) due to the relaxed top-k operation and

a vectorized complexity being O(k log n). Alternatively,

I-MLE performs approximate sampling using perturb-and-

map (PAM) on the forward pass. On the backward pass, it

proposes to use the marginal distribution as a proxy to the

sampled matrix for the derivative computation, that is,

∇θL ≈ ∂θµ(θ)∇Aℓ with µ(θ) := {p(θ,k)(A(G)ij)}ni,j=1,

and further approximates the marginals using PAM samples.

Instead of resorting to approximations, the SIMPLE gradi-

ent estimator derives an exact sampling algorithm to sample

from the k-edge adjacency matrix distribution p(θ,k)(A(G))
on the forward pass, and couples it with an exact and ef-

ficient computation of the marginals µ(θ) that is differ-

entiable on the backward pass, to achieve lower bias and

variance via the exact computations, whose vectorized com-

plexity is O(log k log n).

Upstream Model. For the upstream model hv(A,X), we

use either an MPNN or a transformer followed by an atten-

tion layer. In the case of MPNNs, we use the GIN layer (Xu

et al., 2019). That is, given a graph G, in each layer t ∈ [T ],
we compute a feature

h
(t)
i = γℓ

(

(

1 + ϵ(t)
)

· h(t)
i +

∑

j∈N (i)

h
(t−1)
j

)

,

for node i ∈ V (G), with γ(t) a multi-layer perceptron

(MLP), ϵ a learnable parameter, h0
i = Xi, and N (i) is

the neighborhood of node i. For an edge (i, j) ∈ E(G),
we compute θij = ϕ([hT

i ||hT
j ]) ∈ R, where [·||·] is the

concatenation operator and ϕ is an MLP.

Alternatively, to be less dependent on local structure, we

utilize a self-attention (SA) block (Vaswani et al., 2017) for

the calculation of prior scores, i.e.,

θ =
QKT

√
dk

∈ R
n×n,

where dk denotes the number of columns of the matrices Q

and K. The matrices Q and K are the result of projecting

X linearly, i.e., Q := XWQ and K := XWK , where

WQ and WK ∈ R
d×dk . In addition, to capture graph

structure, i.e., information regarding A(G), we column-

wise concatenate structural or position encoding (Dwivedi &

Bresson, 2020; Müller et al., 2023; Min et al., 2022; Kreuzer

et al., 2021) to the initial attribute matrix X. In addition,

to circumvent the quadratic complexity, we compute priors

for only a subset of node pairs by utilizing a heuristic, e.g.,

based on shortest-path distances.

Downstream Model. For all of our sampling and base

experiments, we use an MPNN with GIN layers (Xu et al.,

2019). For the instances where we have access to edge

features, we employ the GINE variant (Hu et al., 2020) for

edge feature processing. For graph-level tasks, we employ a

pooling function, such as mean or sum pooling, while for

node-level tasks, we take the node embedding hT
i . The final

embeddings are then processed and projected to the target

space by an MLP.

3. Experimental Evaluation

Here, we aim to investigate to what extent our task-adaptive

graph rewiring leads to improved predictive performance on

synthetic and real-world datasets. Concretely, we answer

the following questions.

Q1 Does task-adaptive graph rewiring alleviate over-

squashing and under-reaching on synthetic datasets?

Q2 Does task-adaptive graph rewiring translate to boosted

predictive performance on (a) graph-level molecular

prediction tasks and (b) heterophilic node-level predic-

tion tasks?

The source code of all methods and evaluation procedures

will be made available in a public repository. We refer to

Appendix B for details on the experimental protocol and

model configurations.

Datasets. To answer Q1, we utilized the TREES-

NEIGHBORSMATCH dataset, as in (Alon & Yahav, 2021).

Additionally, we created the TREES-LEAFCOUNT dataset

to investigate whether our method could mitigate under-

reaching issues; see Appendix A for details. To answer

Q2 (a), we used the established molecular graph-level re-

gression datasets ALCHEMY (Chen et al., 2019) and ZINC

(Jin et al., 2017; Dwivedi et al., 2020). To answer Q2 (b),

we used the established CORNELL, WISCONSIN, TEXAS

node-level classification datasets (Pei et al., 2020).

Baseline and Model Configurations. We compare our

rewiring approaches with the base downstream model, both

with and without positional embeddings; see Appendix B).
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Table 1. Quantitative results on the ALCHEMY dataset and the heterophilic and transductive WEBKB datasets. Best overall; Second best;

Best Non-GT. Rewiring outperforms the base models on all of the datasets. Graph transformers have an advantage over both the base

models and the ones employing rewiring.

ALCHEMY HETEROPHILIC & TRANSDUCTIVE

+ EDGE ↓ CORNELL ↑ TEXAS ↑ WISCONSIN ↑

O
U

R
S

BASE 11.12 ± 0.690 0.574 ± 0.006 0.674 ± 0.010 0.697 ± 0.013
BASE W. PE 7.197 ± 0.094 0.540 ± 0.043 0.654 ± 0.010 0.649 ± 0.018
HALF TRF. 7.135 ± 0.171 0.501 ± 0.014 0.597 ± 0.023 0.630 ± 0.016
REWIRESim 6.447 ± 0.057 0.623 ± 0.029 0.706 ± 0.014 0.750 ± 0.015

G
T

S

GPS (LAPPE) - 0.662 ± 0.038 0.778 ± 0.010 0.747 ± 0.029
GPS (RWSE) - 0.708 ± 0.020 0.775 ± 0.012 0.802 ± 0.022
GPS (DEG) - 0.718 ± 0.024 0.773 ± 0.013 0.798 ± 0.090
GRAPHORMER (DEG) - 0.683 ± 0.017 0.767 ± 0.017 0.770 ± 0.019
GRAPHORMER (DEG + ATTN BIAS) - 0.683 ± 0.017 0.767 ± 0.017 0.770 ± 0.019

Further, we compare to standard graph transformer baseline

(Müller et al., 2023), GPS (Rampášek et al., 2022), and SAT

(Chen et al., 2022), two state-of-the-art graph transformer

models. We utilize the same upstream hv and downstream

fu architectures for the rewiring experiments. To rewire

the graphs, for ALCHEMY, we learn to add 10 new edges

while removing 40 existing edges. For ZINC, we add 80

edges and remove 20 edges. Additionally, in the case of

the ZINC dataset, we compare multiple sampling schemes,

using either GUMBEL SOFTSUB-ST (Maddison et al., 2017;

Jang et al., 2017; Xie & Ermon, 2019), I-MLE (Niepert

et al., 2021), or SIMPLE (Ahmed et al., 2023) in terms of

predictive power and computation time.

Experimental Results and Discussion. Concerning

Q1, our rewiring method achieves perfect test accu-

racy up to a problem radius of 6 on both the TREES-

NEIGHBORSMATCH and the TREES-LEAFCOUNT datasets,

see Figure 3. For the TREES-LEAFCOUNT dataset, our

model can create connections directly from the leaves to the

root, achieving perfect accuracy with a downstream model

containing a single MPNN layer. We provide a qualitative

result in Figure 2 and a detailed discussion in Appendix A.

Concerning Q2 (a), the results in Table 1 and Table 2 show

that our rewiring methods consistently outperform the base

models on both ZINC and ALCHEMY, and are competi-

tive or better than the state-of-the-art GPS and SAT graph

transformer methods. Hence, our results indicate that task-

adaptive graph rewiring can improve performance for molec-

ular prediction tasks. Concerning Q2 (b), Table 1 showcases

the performance gains of our rewiring method over the base

models, indicating that data-driven rewiring has the poten-

tial of alleviating the effects of over-smoothing by removing

undesirable edges and making new ones between nodes with

similar features. The graph transformer methods outperform

both the rewiring approach and the base models. We specu-

late that GIN’s aggregation mechanism for the downstream

models is a limiting factor on heterophilic data and leave

the analysis of combining task-adaptive graph rewiring with

Table 2. Quantitative results on the ZINC dataset. The two columns

refer to using edge features or not. Best overall; Best with GIN

backbone; Second best. All of the rewiring approaches (GUMBEL,

I-MLE, SIMPLE) are using the same hyperparameters. For the

Structure-Aware Transformer (SAT), we report the results by (Chen

et al., 2022) for both the GIN backbone and the best overall MPNN

backbone. For GPS, we report the results by (Rampášek et al.,

2022). The REWIRESIM rewiring method uses the SIMPLE gradient

estimator and outperforms all of the models using GIN layers while

being competitive with state-of-the-art graph transformers.

ZINC

- EDGE ↓ + EDGE ↓

G
IN

K-ST SAT 0.166 ± 0.007 0.115 ± 0.005
K-SG SAT 0.162 ± 0.013 0.095 ± 0.002
BASE 0.258 ± 0.006 0.207 ± 0.006
BASE W. PE 0.162 ± 0.001 0.101 ± 0.004
HALF TRF. 0.154 ± 0.005 0.109 ± 0.005
REWIREGMB 0.153 ± 0.003 0.103 ± 0.008
REWIREIMLE 0.151 ± 0.001 0.104 ± 0.008
REWIRESIM 0.139 ± 0.001 0.092 ± 0.004

B
E

S
T GPS - 0.070 ± 0.004

K-ST SAT 0.164 ± 0.007 0.102 ± 0.005
K-SG SAT 0.131 ± 0.002 0.094 ± 0.008

downstream models that address over-smoothing for future

investigations.

4. Conclusions

Here, we utilized recent advances in differentiable k-subset

sampling to devise a novel task-adaptive graph rewiring ap-

proach, which learns to add relevant edges while omitting

less beneficial ones. On synthetic datasets, we demonstrated

that our approach effectively alleviates the issues of over-

squashing and under-reaching. In addition, on established

real-world datasets, we showed that our method is competi-

tive or superior to conventional MPNN models and graph

transformer architectures regarding predictive performance

and computational efficiency.
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networks for graph property prediction. ArXiv preprint,

2022.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Steeg, G. V., and Galstyan,

A. MixHop: Higher-order graph convolutional architec-

tures via sparsified neighborhood mixing. ArXiv preprint,

2019.

Ahmed, K., Zeng, Z., Niepert, M., and Van den Broeck, G.

Simple: A gradient estimator for k-subset sampling. In

International Conference on Learning Representations,

2023.

Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications. In International

Conference on Learning Representations, 2021.

Banerjee, P. K., Karhadkar, K., Wang, Y. G., Alon, U., and
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Table 3. Overview of used hyperparameters.

DATASET HIDDEN SIZE GIN LAYERS BATCH SIZE MLP LAYERS

ZINC 256 4 128 3
ALCHEMY 256 4 128 3
HETEROPHILIC 128 2 - 3
SYNTHETIC 32 1 1024 3

A. Datasets

Here, we give additional information regarding the datasets.

Synthetic Dataset. For the TREES-LEAFCOUNT dataset, we fix a problem radius R > 0 and retrieve the binary representa-

tion of all numbers fitting into 2R bits. This construction allows us to create 2R unique binary trees by labeling the leaves

with “0” and “1” corresponding to the binary equivalents of the numbers. A label is then assigned to the root node, reflecting

the count of leaves tagged with “1”. From the resulting graphs, we sample to ensure an equal class distribution. The task

requires a model to predict the root label, thereby requiring a strategy capable of conveying information from the leaves to

the root.

We aim to have a controlled environment to observe if our upstream model hv can sample meaningful edges for the new

graph configuration. Conventionally, a minimum of R message-passing layers is required to accomplish both tasks (Barceló

et al., 2020; Alon & Yahav, 2021). However, a single-layer upstream MPNN could trivially resolve both datasets, provided

the rewired graphs embed direct pathways from the root node to the leaf nodes containing the label information. To

circumvent any potential bias within the sampling procedure, we utilize the self-attention mechanism described in Section 2

as our upstream model hv, along with a single-layer GIN architecture serving as the downstream model fu. For each

problem radius, we sample exactly k = 2D edges. Indeed, our method consistently succeeded in correctly rewiring the

graphs in all tested scenarios, extending up to a problem radius of R = 6, and achieved perfect test accuracy on both

datasets. Figure 2 presents a qualitative result from the TREES-LEAFCOUNT dataset, further illustrating the capabilities of

our approach.

B. Hyperparameter and Training Details

Experimental Protocol. Table 3 details our base models’ hyperparameters. The HALF TRANSFORMER model contains two

transformer layers with a hidden size of 64, followed by the BASE model. For the upstream model, we do a hyperparameter

search for the number of added and deleted edges, hidden size, and network depth for each rewiring experiment. For all our

experiments, we use early stopping with an initial learning rate of 0.001 that we decay by half on a plateau.

We compute each experiment’s mean and standard deviation with different random seeds over three runs. We take the best

results from the literature for the graph transformer models. We evaluate test predictive performance based on validation

performance. In the case of the WEBKB datasets, we employ a 10-fold cross-validation with the official data splits.

Except for the BASE model, our models use positional and structural embeddings concatenated to the initial node features.

Specifically, we add both RWSE and LAPPE (Dwivedi et al., 2022a). We use the same downstream model as the base

model for the rewiring models.

C. Additional Experimental Results

Here, we report on the computation times of different variants of our task-adaptive graph rewiring schemes and results on

synthetic datasets.

Training Times. We report the average training time per epoch in Tab. 4. The RANDOM entry refers to using random

adjacency matrices as rewired graphs.

7



Probabilistic Task-Adaptive Graph Rewiring

Figure 2. A sample from the TREES-LEAFCOUNT dataset with the problem radius R = 4, after 100 training epochs. Left: original graph,

right: rewired graph. After just one round of message-passing, the root node can obtain the label information from the leaves.
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Figure 3. Test accuracy of our rewiring method on the TREES-NEIGHBORSMATCH dataset, compared to the reported accuracies from

(Müller et al., 2023).

Table 4. Computations time for rewiring approaches on ZINC. Average over five epochs. Number of added edges: 80. Number of deleted

edges: 20. Experiments performed on a machine with a single Nvidia RTX A5000 GPU and a Intel i9-11900K CPU.

SAMPLER TIME/EPOCH (S)

RANDOM 8.54 ± 0.04
GUMBEL SOFTSUB-ST 11.87 ± 0.05
I-MLE 11.24 ± 0.11
SIMPLE 11.53 ± 0.07
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