
Dynamic Control of Queuing Networks

via Differentiable Discrete-Event Simulation

Ethan Che * 1 Jing Dong 1 Hongseok Namkoong 1

Abstract

Queuing network control is a problem that arises

in many applications such as manufacturing, com-

munications networks, call centers, hospital sys-

tems, etc. Reinforcement Learning (RL) offers a

broad set of tools for training controllers for gen-

eral queuing networks, but standard model-free

approaches suffer from high variance of trajecto-

ries, large state and action spaces, and instability.

In this work, we develop a modeling framework

for queuing networks based on discrete-event sim-

ulation. This model allows us to leverage tools

from the gradient estimation literature to compute

approximate first-order gradients of sample-path

performance metrics through auto-differentiation,

despite discrete dynamics of the system. Using

this framework, we derive gradient-based RL al-

gorithms for policy optimization and planning.

We observe that these methods improve sample

efficiency, stabilize the system even when starting

from a random initialization, and are capable of

handling non-stationary, large-scale instances.

1. Introduction

Queuing networks are ubiquitous for modeling job-

processing systems, which arise in applications related to

manufacturing systems (Perkins & Kumar, 1989), call cen-

ters (Bassamboo et al., 2006), communications networks

(Maguluri et al., 2012), hospitals (Dai & Shi, 2019), and

more. In these systems, jobs arrive to queues at random

interarrival epochs and are either routed to a server to be

processed, or wait in the queue if no servers are available.

After a random processing time, they either leave the sys-

tem or are routed to further servers for further processing.

The optimal control problem is determining how to dynam-

*Equal contribution 1Decision, Risk and Operations, Columbia
Business School, New York, US. Correspondence to: Ethan Che
<eche25@gsb.columbia.edu>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

Figure 1. Histogram of gradient estimators for average queue

length of a linear softmax policy in the N-model network (see

Appendix A.2), across a horizon of N = 1000 steps.

ically allocate server capacity to jobs in order to optimize

various performance metrics, such as minimizing average

waiting time of jobs in the queue, average length of queues,

maximizing job-server compatibility, etc.

Solving this control problem is known to be difficult, due

to high stochasticity, nonlinear and non-smooth dynamics,

non-stationarity, and complexity of the network topology.

While there are many effective heuristics such as the cµ-rule

(Mandelbaum & Stolyar, 2004), the MaxWeight policy (Dai

& Lin, 2005), or fluid policies (Chen & Yao, 1993), their

performance can vary across different problem settings, and

theoretical guarantees are only available for specific net-

work architectures and specific load regimes. For these

reasons, recently there has been much interest in Reinforce-

ment Learning (RL) as a way to develop control policies

for generic queuing networks. While there has been much

development in applying model-free RL, these approaches

face challenges due to high variance of trajectories, large

state and action spaces, as well as instability of the system

under poor controllers (Meyn, 2008; Dai & Gluzman, 2022;

Liu et al., 2022; Zaki et al., 2021).

In this work, we provide a model-based framework for pol-

icy optimization and planning for controlling multi-class,

multi-pool queuing networks through the lens of discrete

event simulation. Rather than standard RL approaches for

queuing, which typically rely on a discrete-time Markov De-

1



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

cision Process (MDP) representation which only holds when

arrivals and service times are stationary and are exponen-

tially distributed, we model the system as a discrete event

dynamical system (Ho, 1987; Ho & Cao, 2012; Tsitsiklis,

1989) in continuous time, sampling the system whenever

an arrival or service occurs. This model only relies on

samples of event times and allows for non-stationary and

non-Markovian arrival and service processes, which better

matches behavior of real-world systems (Green et al., 2007).

Importantly, this modeling framework provides a novel way

to obtain approximate first-order derivatives of performence

metrics with respect to controls applied to the system. First,

we use a continuous relaxation of the action space moti-

vated by fluid models to obtain a ‘reparameterization trick’

(Kingma & Welling, 2013) of the dynamics with respect to

the actions. While these dynamics are non-differentiable,

we apply the ‘straight-through’ trick (Bengio et al., 2013)

to obtain gradients. This way, we can directly compute

the gradient of rewards or costs accumulated in a rollout

through reverse-mode autodifferentiation. This can be done

in parallel with minibatches of rollouts using GPUs. While

straight-through gradients are known to be potentially bi-

ased, we observe the bias is very small in practice even for

long episodes, and the variance is significantly lower than

standard zero-order estimators (see Figure 1 and Figure 2).

We propose two RL algorithms based on these first-order

gradients. Straight-through Policy Gradient (StraightPG)

updates policy parameters using straight-through gradients

of cost computed via autodifferentiation along mini-batches

of sample paths. Straight-through Planning is a model-

predictive control style policy that solves a planning prob-

lem via straight-through gradients. Our preliminary results

show that despite relying on approximate gradients, these

policies match the performance of well-established heuris-

tics and model-free RL algorithms on standard instances,

but with improved sample efficiency. And unlike other RL

methods, which require switching to a stabilizing policy

(Liu et al., 2022; Zaki et al., 2021) or behavorial cloning

of a stabilizing policy (Dai & Gluzman, 2022), the training

process is robust to instability even when starting from a

random initialization.

2. Model

We consider a continuous-time multi-class, multi-pool queu-

ing network with m servers and n queues corresponding to

n different job types, with time indexed by t ∈ R
n
+. The

topology of the queuing network M = {0, 1}m×n describes

the compatibility of servers and jobs, with Mij = 1 if server

i can serve job type j. The job lengths (or state) x(t) ∈ N
n

are the number of jobs of each type still remaining in the

system, including jobs waiting in queue and jobs in ser-

vice. Jobs arrive according to stochastic interarrival times

Figure 2. Normalized RMSE and bias of gradient estimators for

average queue length of a linear softmax policy in the N-model

network (see Appendix A.2) across a horizons ranging from N =

50 to N = 1000 steps. Normalized by the magnitude of the

average gradients.

τA(t) ∈ R
n
+, which may be depend on time t, and if they

are not served immediately they wait in queue.

2.1. Continuous action relaxation

Upon observing the state, the controller chooses an action

a ∈ P := {X ∈ R
m×n
+ : X1 = 1, 1⊤X = 1}, which

is an assignment of job types to servers, which must be

feasible according to M . If server i is assigned to job type

j, then a job from queue j is routed first-in first-out (FIFO)

to the server, upon which the server begins processing it.

The processing time for each job-server pair is described

by τS(t) ∈ R
m×n
+ , which may different across job-server

pairs and can vary across time. Yet, since the servers only

process jobs routed to them according to a, the service time

for server i and a job of type j is equal to τSij only if aij = 1,

and infinite otherwise.

Drawing inspiration from fluid models (Chen & Yao, 1993),

we consider a novel continuous relaxation of the dynamics,

in which the realized service times are equal to τS/a, with

division being element-wise. This allows for non-integral

assignments, which represent a server splitting its capac-

ity between several jobs or a job being served by several

servers. This way, we consider deterministic policies over

a continuous relaxation of the action space, which departs

from standard RL treatments of queuing control that typi-

cally use stochastic policies over discrete actions. Note that

we use this relaxation for training and optimization, but for

evaluation we restrict to integral assignments. After a job is

served it leaves the system or enters another queue.

2.2. Discrete event dynamical system

Although the process evolves in continuous time, we can

obtain a discrete-time characterization by sampling the pro-

cess when an arrival or a service occurs. We refer to this

2



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

as the discrete-event dynamical system model. Let τk ∈ R

for k ∈ N+ be denote as the kth event epoch. We define

xk := x(τk) to be the job length process sampled at τk, and

let τAk , τSk be the arrival times and service times at epoch k.

Starting from τ0 = 0, the next event epoch is determined

as the minimum of the all the total possible event times:

τk+1 = min{τAk , τSk /a}.

Define e(τAk , τSk /a) ∈ {0, 1}
2n as the one-hot vector de-

noting which event had the minimum time. The first n
entries refer to an arrival for type j, the latter n entries refer

to service of type j. The model is also described by an

event matrix ∆ ∈ R
2n×n, where each row i corresponds to

how the job lengths x(t) are updated if the ith event is the

minimum event time. With this, the dynamics are:

τk+1 = min{τAk , τSk /a} (1)

xk+1 = xk +∆⊤e(τAk , τSk /a) (2)

where the first equation describes the event epoch and the

second equation is the update for the state. The arrival and

service times of other jobs are reduced by τk+1 and are reset

if the event was the minimum time event.

Example 2.1. Consider a single server M/M/1 queue with

arrival rate λ and service rate µ. Interarrivals are τA ∼
Exp(1/λ), services are τS ∼ Exp(1/µ), a = 1{x > 0},

∆⊤ =

(

1
−1

)

, e(τA, τS/a) =

{

(1, 0) τA < τS/a

(0, 1) τA > τS/a

This can be seen as a ‘reparameterization trick’ (Kingma

& Welling, 2013) of the dynamics with respect to actions;

enabling us to evaluate different actions under the same

sample path of stochastic inputs, i.e. τA and τS .

2.3. Control problem

The objective of the controller is to minimize an average

cost metric, such as the average job lengths or the aver-

age time the system is busy. Let c(x, a) be the instanta-

neous cost given job lengths x and assignment a. A typ-

ical cost is a c(x, a) = h⊤x where h is a vector of hold-

ing costs associated with each job type. The objective is

to minimize the average cost over a horizon of length T :

min
∫ T

0
c(x(t), a(t))dt. In the discrete-event dynamical sys-

tem, we replace this with the average of the cost over the

event times: min
∑NT

k=1
c(xk, ak)(τk+1 − τk). where NT

is the number of events that occur before time T .

2.4. Straight-through gradients

The key source of non-differentiability in the model is

e(τAk , τSk /a), which is a onehot argmin of the event times.

If this could replaced with a differentiable surrogate, the

job-lengths would evolve as a differentiable function of the

Algorithm 1 Straight-through Policy Gradient (StraightPG)

Input: Initial state x0, learning rate α, epochs m, episode

length N , initial policy ρθ0
for i = 0 to m− 1 do

Draw a sample path and compute cumulative cost

V (x0) =
∑N

k=1
c(xk, a(ρθi(xk)))(τk+1 − τk).

Compute ∇θiV (x0) with straight-through trick.

Update θi+1 ← θi − α∇θiV (x0).
end for

action a. To do so, we employ the straight-through trick

to differentiate through e, a trick which has been used ef-

fectively in discrete representation learning (Van Den Oord

et al., 2017) and model-based RL (Hafner et al., 2020). In

other words, we replace e with

ê(τAk , τSk /a) := e(τAk , τSk /a) + softmin(τAk , τSk /a) (3)

− sg[softmin(τAk , τSk /a)]

where sg[·] is the stop gradient operator. This will produce

identical trajectories as in the update (1) in the forward pass,

but behaves as a softmin in the backward pass.

As a result, we can estimate gradients of the cost of a tra-

jetory with respect to any routing action or sequence of ac-

tions taken along the way: ∇ak

∑N
k=1

c(xk, ak)(τk+1−τk).
Figure 1 and 2 compare the variance and bias of the straight-

through estimator with finite differences (using the continu-

ous relaxation and under coupled random seeds) and the RE-

INFORCE estimator for a simple linear policy. We observe

that the estimator achieves significant variance reduction

over alternatives, with low bias.

2.5. Sinkhorn parameterization

Instead of optimizing over actions a ∈ P , we param-

eterize actions in terms of priorities ρ ∈ R
m×n which

produce assignments through linear assignment: ā(ρ) =
maxa∈P Tr(aρ).

Example 2.2. The cµ-rule uses a static priority ρij =
hjµij where µij is service rate of server i and job type j.

MaxWeight uses a state-dependent priority ρij = xjhjµij .

To maintain differentiability, we replace the hard lin-

ear assignment with Sinkhorn’s algorithm: a(ρ) =
maxa∈P Tr(aρ) + λKL(a|11⊤). Thus, actions only specify

relative values of assigning a server to a job, rather than

specifying the assignment exactly.

3. Algorithms and Empirical Results

Using the first-order gradients obtained through the straight-

through trick and Sinkhorn parameterization, we propose

two policies. First, Straight-through Policy Gradient, which

3



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

Algorithm 2 Straight-through Planning (StraightPlan)

Input: Initial state x0, total episode length N , planning

horizon H .

for k = 0 to N do

Solve planning problem minρk:k+H
V (xk) =

∑k+H
i=k c(xi, a(ρi))(τk+1 − τk) via gradient descent

on sample-path rollouts.

Play action ak = ā(ρk) via linear assignment.

Update states and times (xk+1, τk+1) with (1).

end for

parameterizes priorities ρθ that produce actions through

Sinkhorn’s algorithm. The parameter θ is updated by gradi-

ents of the cost from sample rollouts directly through auto

differentiation. Second, Straight-through Planning, which is

a model-predictive control (MPC) style policy that solves a

planning problem via gradients of sample-path rollouts. We

evaluate the performance of the policy on a few examples.

3.1. Criss-cross Network and Reentrant Network

To further evaluate the quality of the straight-through gra-

dients, we train policy gradient to minimize the stationary

average queue-length of the criss-cross network (Harrison &

Wein, 1990), which is a simple tandem queue with 2 servers

and 3 job types. We evaluate across different load levels

(see Table 4 in Appendix A.3). To assess validity for large

systems, we train the method on a class of reentrant queu-

ing networks introduced in (Bertsimas et al., 2014) across

different system sizes. We compare against benchmarks

such as the robust fluid policy (RFP) (Bertsimas et al., 2014)

and Proximal Policy Optimization (PPO) as implemented

in (Dai & Gluzman, 2022), which uses several variance re-

duction strategies. We observe in Table 1 and 2 that despite

potential bias in the gradients, straight-through policy gra-

dient outperforms RFP and achieves similar performance

to PPO, typically using fewer policy iterations and without

requiring an initial behavior cloning step to ensure stability.

3.2. Parallel-server system

To test the applicability of the model to non-stationary set-

tings, we consider a parallel-server system with 5 servers

and 5 queues (Chen et al., 2021). We consider a non-

Table 1. Average Queue Length in Criss Cross Network

SETTING OPTIMAL RFP PPO STRTPG

IMB.LIGHT 0.671 0.677 0.671 0.673

BAL.LIGHT 0.843 0.855 0.844 0.854

IMB.MED 2.084 2.133 2.084 2.107

BAL.MED 2.829 2.920 2.833 2.888

IMB.HEAVY 9.97 10.10 10.01 10.01

BAL.HEAVY 15.23 15.58 15.35 15.34

Table 2. Average Queue Length in Reentrant Network

NUM CLASSES RFP PPO STRTPG

6 15.42 14.13 15.68
9 24.92 23.27 22.43
12 36.86 32.17 32.38
15 43.63 39.30 37.51
18 52.98 51.47 48.36
21 59.05 55.12 55.45

Table 3. Average Holding Cost in Parallel Server System

POLICY AVG HOLDING COST

cµ-RULE 107.01
FLUID 83.35
MAXWEIGHT 88.34
STRAIGHTPG 77.29
STRAIGHTPLAN 78.25

stationary arrival process where queues 1 and 3 experience

a demand surge until time t = 100. We compare against

cµ-rule, MaxWeight, and the fluid policy in Table 3. We

observe that the gradient-based algorithms outperform other

policies and do so by planning ahead and tapering service

to the overloaded queues before the demand surge ends.

4. Related Work

Our work directly builds on approaches for queuing in RL

as in (Zaki et al., 2021; Dai & Gluzman, 2022; Liu et al.,

2022), and proposes a new gradient estimator. Our approach

is related to differentiable simulation for policy optimiza-

tion (Suh et al., 2022; Mora et al., 2021), as it uses exact

gradients to update policies. Our work builds on previous

literature on sensitivity analysis in discrete event systems

(Ho & Cao, 2012; Ho, 1987), but methodologically ap-

proaches this from the viewpoint of gradient estimation for

discrete random variables (Tucker et al., 2017; Mohamed

et al., 2020). Of particular relevance is (Arya et al., 2022),

who propose a framework for autodifferentation (AD) with

discrete random variables, which produces unbiased gradi-

ent estimates with stochastic coupling for variance reduction.

This offers a promising method for queuing network control.

Our approach instead constructs a differentiable ‘reparame-

terization trick’ of the dynamics with respect to actions for

reverse-mode AD, appropriate for computing gradients of

scalar costs with respect to high-dimensional policy param-

eters and actions. While their framework also allows for

reverse-mode AD, gradients are no longer unbiased due to

non-linear dynamics. Our estimator has low bias in practice

and significantly reduced variance than the finite-difference

estimator with coupled random seeds (in Figure 1 and 2),

which suggests that embedding discrete actions into a contin-

uous space and reparameterizing the dynamics may obtain

greater variance reduction than stochastic coupling alone.

4



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

References

Arya, G., Schauer, M., Schäfer, F., and Rackauckas, C.

Automatic differentiation of programs with discrete ran-

domness. Advances in Neural Information Processing

Systems, 35:10435–10447, 2022.

Bassamboo, A., Harrison, J. M., and Zeevi, A. Design and

control of a large call center: Asymptotic analysis of an

lp-based method. Operations Research, 54(3):419–435,

2006.

Bengio, Y., Léonard, N., and Courville, A. Estimating or

propagating gradients through stochastic neurons for con-

ditional computation. arXiv preprint arXiv:1308.3432,

2013.

Bertsimas, D., Nasrabadi, E., and Paschalidis, I. C. Ro-

bust fluid processing networks. IEEE Transactions on

Automatic Control, 60(3):715–728, 2014.

Chen, H. and Yao, D. D. Dynamic scheduling of a multiclass

fluid network. Operations Research, 41(6):1104–1115,

1993.

Chen, J., Dong, J., and Shi, P. Optimal routing under de-

mand surges: The value of future arrival rates. Available

at SSRN 3980227, 2021.

Dai, J. G. and Gluzman, M. Queueing network controls via

deep reinforcement learning. Stochastic Systems, 12(1):

30–67, 2022.

Dai, J. G. and Lin, W. Maximum pressure policies in

stochastic processing networks. Operations Research,

53(2):197–218, 2005.

Dai, J. G. and Shi, P. Inpatient overflow: An approximate dy-

namic programming approach. Manufacturing & Service

Operations Management, 21(4):894–911, 2019.

Green, L. V., Kolesar, P. J., and Whitt, W. Coping with time-

varying demand when setting staffing requirements for a

service system. Production and Operations Management,

16(1):13–39, 2007.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-

tering atari with discrete world models. arXiv preprint

arXiv:2010.02193, 2020.

Harrison, J. M. and Wein, L. M. Scheduling networks of

queues: Heavy traffic analysis of a two-station closed

network. Operations research, 38(6):1052–1064, 1990.

Ho, Y.-C. Performance evaluation and perturbation analysis

of discrete event dynamic systems. IEEE Transactions

on Automatic Control, 32(7):563–572, 1987.

Ho, Y.-C. L. and Cao, X.-R. Perturbation analysis of dis-

crete event dynamic systems, volume 145. Springer Sci-

ence & Business Media, 2012.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

Liu, B., Xie, Q., and Modiano, E. Rl-qn: A reinforcement

learning framework for optimal control of queueing sys-

tems. ACM Transactions on Modeling and Performance

Evaluation of Computing Systems, 7(1):1–35, 2022.

Maguluri, S. T., Srikant, R., and Ying, L. Stochastic models

of load balancing and scheduling in cloud computing

clusters. In 2012 Proceedings IEEE Infocom, pp. 702–

710. IEEE, 2012.

Mandelbaum, A. and Stolyar, A. L. Scheduling flexible

servers with convex delay costs: Heavy-traffic optimality

of the generalized cµ-rule. Operations Research, 52(6):

836–855, 2004.

Meyn, S. Control techniques for complex networks. Cam-

bridge University Press, 2008.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.

Monte carlo gradient estimation in machine learning. The

Journal of Machine Learning Research, 21(1):5183–5244,

2020.

Mora, M. A. Z., Peychev, M., Ha, S., Vechev, M., and Coros,

S. Pods: Policy optimization via differentiable simulation.

In International Conference on Machine Learning, pp.

7805–7817. PMLR, 2021.

Perkins, J. R. and Kumar, P. Stable, distributed,

real-time scheduling of flexible manufactur-

ing/assembly/diassembly systems. IEEE Transactions on

Automatic Control, 34(2):139–148, 1989.

Suh, H. J., Simchowitz, M., Zhang, K., and Tedrake, R.

Do differentiable simulators give better policy gradients?

In International Conference on Machine Learning, pp.

20668–20696. PMLR, 2022.

Tsitsiklis, J. N. On the control of discrete-event dynamical

systems. Mathematics of Control, Signals and Systems, 2

(2):95–107, 1989.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-

Dickstein, J. Rebar: Low-variance, unbiased gradient

estimates for discrete latent variable models. Advances

in Neural Information Processing Systems, 30, 2017.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-

resentation learning. Advances in neural information

processing systems, 30, 2017.

5



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

Zaki, M., Mohan, A., Gopalan, A., and Mannor, S. Im-

proper reinforcement learning with gradient-based policy

optimization. arXiv preprint arXiv:2102.08201, 2021.

6



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

A. Appendix A

A.1. Implementation

We detail the Straight-through Policy Gradient algorithm and the Straight-through planning policy in Algorithms 1 and 2

respectively.

For the criss-cross network and reentrant networks, we parameterize the policy ρθ as a multi-layer perceptron (MLP) with

input dimension equal to the number of queues, output dimension m × n and 3 hidden layers with 128 hidden units in

each layer. For the criss-cross network, each policy gradient step uses a mini-batch of 50 episodes in parallel of length

N = 5, 000 for light loaded, N = 10, 000 for medium loaded systems, and N = 20, 000 steps for heavily loaded system.

For the reentrant network each policy gradient step uses a mini-batch of 50 episodes in parallel of length N = 20, 000 steps.

For the parallel-server system, due to non-stationary, we also input time t as another input variable, with all else being the

same.

A.2. N-model

The N-model is a network with two queues and two servers. Each queue has it’s own designated server, but server 1 can also

capable of serving jobs in queue 2, at a reduced service rate. The network topology is:

M =

(

1 1
0 1

)

In Figure 1 and Figure 2, we consider a system where interarrivals of the queues are distributed Exp(1/λ1) and Exp(1/λ2)
with λ1 = 0.4ρ and λ2 = 1.3ρ where ρ = 0.95. Service times of server i and queue j are distributed Exp(1/µij) with

service rates µij :

µ =

(

1 0.5
0 1

)

To assess the quality of gradients, we consider a linear softmax policy of the form:

a(x) = softmax

([

θ11x1 θ12x2

0 θ22x2

])

where the softmax is performed row-wise. We take gradients of the cumulative holding cost with respect to the parameters θ,

evaluated at θ11 = θ12 = θ22 = 2 across an episode of N events:

∇θVθ(x0) = ∇θ

[

N
∑

k=1

xk,1 + xk,2

]

For the straight-through and finite difference estimators, we calculate the gradient with respect to the non-integral assignment

a(x). For the finite difference estimator, we use the two point estimator with σ = 0.1:

∇θVθ(x0) =
1

σ
E [Vθ+σZ(x0)− Vθ(x0)]

where Z ∼ N(0, I) ∈ R
3 is a standard normal random vector. For both rollouts, we use the same random seed, which

couples the arrival and service times. Note that the finite difference estimator is using the same continuous action relaxation

as the straight-through estimator and produces an unbiased estimate of∇θVθ(x0). For this reason, we use this estimator to

measure the bias of the straight-through gradients.

To compare the REINFORCE estimator, which typically considers stochastic policies over discrete actions, we look at a

policy that instead of choosing the action a(x), samples from the softmax to produce a hard assignment. Since the evaluated

policy is different, the gradient differs from what we obtain from the straight through and finite difference estimators. While

the sign of the REINFORCE gradients are the same, they tend to be off by a scale factor. For a comparison, in Figure 2 we

present the normalized root mean squared error (RMSE) of the different gradient estimators, where the RMSE is normalized

by the magnitude of the gradient. For the straight-through estimator, RMSE is calculated by taking the mean squared error

with the average finite difference estimator (across 100,000 estimates). For the other estimators, RMSE is the square root of

sum of variances of each component, considering both estimators to be unbiased. In Figure 1, we rescale the gradient so that

its mean is equal to that of the finite-difference estimator.

7



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

Table 4. Load parameters in each settings

SETTING λ1 λ3 µ11 µ13 µ22

IMB.LIGHT. 0.3 0.3 2 1.5 2
BAL.LIGHT. 0.3 0.3 2 1 2
IMB.MED. 0.6 0.6 2 1.5 2
BAL.MED. 0.6 0.6 2 1 2
IMB.HEAVY. 0.9 0.9 2 1.5 2
BAL.HEAVY. 0.9 0.9 2 1 2

A.3. Criss-cross

The criss-cross network (Harrison & Wein, 1990) is a network with 3 queues and 2 servers. Queues 1 and 3 can be served by

server 1. When a queue 1 job is served, it joins queue 2 which is served by server 2. When jobs in queue 2 and 3 are served,

they leave the system. The network topology is:

M =

(

1 0 1
0 1 0

)

We consider a system where interarrivals of the queues are distributed Exp(1/λ1), Exp(1/λ2) with service times of server i

and queue j are distributed Exp(1/µij) with service rates µij . Due to the tandem nature of the queue, the event matrix ∆ is:

∆ =

















1 0 0
0 0 0
0 0 1
−1 1 0
0 −1 0
0 0 −1

















where the first 3 rows describe the state change when an arrival occurs (note that no arrivals to queue 2 occur unless they

leave from queue 1) and the second 3 rows discribe the state change when a service occurs. We consider different parameter

settings for the load on the system, described in Table 4.

A.4. Reentrant network

The reentrant queuing network is parameterized by L, which is the number of layers. There are L servers and 3L many job

classes/queues. In each layer, there are 3 queues and each can be served by a single server, who only serves those 3 queues.

Job types have an index j ranging from 0, ..., 3L− 1. After a job of type j is served, the job is sent to queue i+ 3. F or jobs

of type 3L− 3, after the job is processed it is sent to job type 1. For jobs of type 3L− 2 and 3L− 1 after service they are

immediately processed.

Arrivals only occur to queues 0 and 2. The arrival times for both queues are distributed Exp(140/9). Servers are indexed by

i ranging from 0, ..., L. Service times are exponential Exp(1/µij) with

µij =







































1/8 i mod 2 = 0 and j mod 3 = 0

1/2 i mod 2 = 0 and j mod 3 = 1

1/4 i mod 2 = 0 and j mod 3 = 2

1/6 i mod 2 = 1 and j mod 3 = 0

1/7 i mod 2 = 1 and j mod 3 = 1

1 i mod 2 = 1 and j mod 3 = 2

8



Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation

A.5. Parallel-server

We consider a parallel-server system with 5 servers and 5 queues. The network topology is:

M =













1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 1 1 0
0 0 0 1 1













The vector of holding costs on the job lengths for each queue is [2, 1, 1, 2, 1].

We consider a system where interarrivals of the queues are non-stationary and distrubted Exp(1/λi(t)), described as follows

λ1 =

{

2.4 t ≤ 100

0.4 t > 100

λ2 =

{

0.6 t ≤ 100

0.8 t > 100

λ3 = 0.8

λ4 =

{

1.6 t ≤ 100

0.8 t > 100

λ5 = 0.6

The service times are distributed Exp(1/µij) where

µij =

{

Mij i = j

0.8 ·Mij i ̸= j

After being served, the job leaves the system. We consider a horizon length of N = 3000 events, which is around T = 365
in time units.

9


