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Abstract

This study addresses robustness concerns in ma-

chine learning due to dataset drift by integrat-

ing physical optics with machine learning to cre-

ate explicit, differentiable data models. These

models illuminate the impact of data genera-

tion on model performance and facilitate drift

synthesis, precise tolerancing of model sensi-

tivity (drift forensics), and beneficial drift cre-

ation (drift optimization). Accompanying the

study are two datasets, Raw-Microscopy and Raw-

Drone, available at https://github.com/

aiaudit-org/raw2logit.

Camera image data has played a crucial role in advanc-

ing the field of machine learning and also features heavily

in important application domains including medicine and

geospatial modeling. Unfortunately, machine learning sys-

tems can fail depending on their inputs, making robustness

essential to handle variations in input data [88; 75; 83].

This study illustrates the use of explicit data models for

images to manage dataset drift in machine learning work-

flows, facilitating the creation of reliable validation proto-

cols for critical domains. We define dataset drift through(XRAW , Y ) ∶ Ω→ R
H,W
×Y , the raw sensor data generat-

ing random variable on a probability space (Ω,F ,P). Raw

inputs xRAW undergo a data model ΦProc∶R
H,W

→ R
C,H,W ,

providing a processed view v = ΦProc(xRAW) for training

a task model ΦTask ∶ R
C,H,W

→ Y . A different data model

Φ̃Proc creates a new view Ṽ = Φ̃Proc(XRAW ) of XRAW ,

inducing dataset drift

Ds = P ○ (Ṽ , Y )−1 /= Dt. (1)

Dataset drift can stem from variations in camera types or set-
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tings. Robustness validation is not just an engineering task

but also mandated by quality standards [93; 27; 61]. Failure

to do so has obstructed the application of machine learn-

ing technology in impactful fields [8; 85; 23; 52]. Hence,

real-world robustness validation of image machine learning

systems is not just an intellectual exercise but a necessity

for successfully integrating machine learning research with

real-world infrastructures and data. Image dataset drift vali-

dation employs either augmentation testing, which applies

perturbations like Gaussian noise to images [31; 16; 54], or

catalogue testing, which collects diverse camera datasets

[40; 2; 55; 45]. Augmentation can produce unfaithful drift

artifacts, limiting its physical accuracy [90; 96; 35]. Con-

versely, catalogue testing assures physically faithful samples

but requires extensive data collection. The data models of

images have received minimal focus in machine learning

robustness studies, often treated as a black-box despite their

importance [77]. This neglect is surprising, as explicit data

models are crucial in optics, metrology, and industry ap-

plications [7; 73; 89; 13; 28; 64; 101; 99; 38; 74]. For a

comprehensive taxonomy of related work please refer to Ap-

pendix B.4. We bridge machine learning and physical optics

to generate explicit, differentiable data models for flexible,

physically faithful drift controls. Our primary contributions

are 1:

1 Drift synthesis: Physically faithful drift test case syn-

thesis (Section 2.1). 2 Drift forensics: Gradient propa-

gation from the task model to the data model for precise

data forensics (Section 2.2). 3 Drift optimization: Gradi-

ent connection adjustment between data and task model for

better model performance (Section 2.3).

1. Methods

Advanced image data models necessitate raw sensor data,

common in fields like microscopy, biomedicine, and au-

tonomous vehicles. Modern digital camera systems, includ-

ing smartphones, provide access to this data. We explain its

procurement from optical hardware and share two datasets

1This workshop manuscript highlights the most important com-
ponents of our data models approach. For the full paper please
see our publication in the Transactions on Machine Learning
Research [60] at https://openreview.net/forum?id=
I4IkGmgFJz.
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Figure 1: Illustration of an optical imaging pipeline and raw-enabled drift controls. The measurement process outputs raw data xRAW which undergoes image signal

processing (ISP) ΦProc. The processed data is consumed by a machine learning task model ΦTask that outputs ŷ. Combining raw data, machine learning pipeline, and a

differentiable data model allows drift controls: 1 drift synthesis (creation of faithful drift test cases), 2 drift forensics (specifying data environments to avoid), and 3 drift

optimization (using task model gradient to optimize data generation).

for machine learning tasks at https://zenodo.org/

record/5235536.

1.1. Raw dataset acquisition

We introduce two raw datasets, Raw-Microscopy and Raw-

Drone, to fill the gap of calibrated, labelled raw data. Raw-

Microscopy contains annotated blood smear microscope

images, and Raw-Drone includes annotated drone car im-

ages. These diverse datasets representing classification and

regression tasks underscore the importance of robustness

and drift controls in high-stakes scenarios. The datasets’

details are in Appendix B.5.1 and Figure 13 [24].

1.2. Data models: Image signal processing ΦProc

Image data transitions from raw state xRAW to processed

image v through image signal processing ΦProc∶R
H,W

→

R
C,H,W [73]. Raw sensor images differ from typical ma-

chine learning input due to transformations such as correc-

tion, denoising, and sharpening that produce an RGB image

v [7; 44; 26; 92]. These transformations result in varied im-

ages contributing to dataset drift, as shown in visual abstract

on page 1.

Let (XRAW , Y ) ∶ Ω → R
H,W

× Y be the raw sen-

sor data generating random variable on some probability

space (Ω,F ,P), with Y = {0,1}K for classification and

Y = {0,1}H,W for segmentation. Let ΦTask ∶ R
C,H,W

→ Y

be the task model determined during training. The inputs

that are given to the task model ΦTask are the outputs of the

data model ΦProc. We distinguish between the raw sensor

image xRAW and a view v = ΦProc(xRAW) of this image,

where ΦProc∶R
H,W

→ R
C,H,W models the transformation

steps applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a

task model ΦTask ∶ R
C,H,W

→ Y within a fixed class of task

models H that minimizes the expected loss wrt. the loss

function L ∶ Y ×Y → [0,∞), that is to find Φ
⋆

Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )] (2)

is attained. Towards that goal, ΦTask is determined during

training such that the empirical error

1

N

N

∑
n=1

L (ΦTask(vn), yn) (3)

is minimized over a sample S = ((v1, y1), ..., (vN , yN))
of views. Modelling in the conventional machine learn-

ing setting begins with the image data generating ran-

dom variable (V , Y ) = (ΦProc(XRAW ), Y ) and the tar-

get distribution Dt = P ○ (V , Y )−1. Given a dataset drift

Ds = P ○ (Ṽ , Y )−1 /= Dt, as specified in Equation (1),

without a data model we have little recourse to disentangle

reasons for performance drops in ΦTask. To alleviate this

underspecification, an explicit data model is needed. We

consider two such models in this study: a static model Φstat
Proc

and a parametrized model Φ
para
Proc. Following common steps

https://zenodo.org/record/5235536
https://zenodo.org/record/5235536
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in ISP, the static data model is defined as the composition

Φ
stat
Proc =ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL, (4)

mapping a raw sensor image to a RGB image. We note

that other data model variations, for example by reordering

or adding steps, are feasible. The static data models al-

low the controlled synthesis of different, physically faithful

views from the same underlying raw sensor data by manu-

ally changing the configurations of the intermediate steps.

Fixing the continuous features, but varying ΦDM, ΦSH and

ΦDN results in twelve different views for the configurations

considered here. The parametrized data model, Φ
para
Proc, maps

from a parameter space, Θ, to an RGB image from a raw

sensor image. Each processing step of this model is differen-

tiable with respect to parameters θ, enabling backpropaga-

tion of the gradient through the model for drift forensics and

adjustments. This data model is differentiable in θ, fulfilling

Φ
stat
Proc =Φ

para
Proc (⋅,θstat) (5)

for a specific parameter set θ
stat

and static pipeline config-

uration Φ
stat
Proc. Using the components specified earlier, the

parametrized processing model is defined as

Φ
para
Proc ∶ [0,1]3,H,W

×Θ→ [0,1]3,H,W , (xRAW,θ)↦ v (6)

by composing:

v = (Φpara

GC
(⋅,θ7) ○Φ

para

DN (⋅,θ6) ○Φ
para

SH
(⋅,θ5) ○Φ

para

CC
(⋅,θ4) ○

Φ
para

WB (⋅,θ3) ○Φ
para

DM (⋅,θ2) ○Φ
para

BL (⋅,θ1) (xRAW) . (7)

The operations used above are differentiable except for the

clipping operation in the GC that is a.e.-differentiable2, if

the set {0,1} of non-differentiable points has measure zero.

Hence, assuming that P ((vDN)c,h,w ∈ {0,1}) = 0 holds

true for the entries of vDN results in an a.e.-differentiable

processing model. We further say that Φ
para
Proc is differentiable,

noting that this holds only a.e. under the aforementioned

assumption.

2. Applications

With data models, raw data and task models in place we are

now able to demonstrate the advanced dataset drift controls

comprising 1 drift synthesis, 2 modular drift forensics

and 3 drift optimization.

2.1. Drift synthesis

The static data model enables controlled synthesis of pro-

cessed views from a single raw dataset, aiding in model

validation against device-specific drift. In our experiments,

we used twelve data models, training task models on one

and testing them on the other eleven. Results are mean

values over 5-fold cross-validation (see Appendix B.2 for

setup details). The leukocyte classification model, shown

in Figure 2, demonstrates robustness to processing-induced

drift, except for the (ma,s,me) configuration. The segmenta-

2a.e. stands for almost everywhere

1 Drift synthesis with Φ
stat
Proc: Microscopy

Figure 2: The figure depicts 5-fold cross-validation results for Raw-Microscopy

drift synthesis experiments. Each cell indicates the average accuracy with a standard

deviation border. Task models were trained on vertical axis data models and tested

on the horizontal axis processed data. Numbers 1-3 left to the vertical axis rank task

models by average accuracy across all test pipelines, with stars marking the training

pipeline with the best performance for each test pipeline/corruption. Full ranking

results are available in Appendix B.3. Top-left: Data model variations cause mild

performance drops. Top-right: Comparison to a corruption benchmark shows a 13x

higher average performance drop. Bottom: Visual inspection of worst-case train/test

pipelines.

2 Drift forensics with ∇θλ∥V − Ṽ ∥22 −L(Ṽ ,Y )

Figure 3: (a): The figure shows test accuracy on the Raw-Microscopy test set

after 20 epochs of adversarial search in the data model for different regularization

weights λ. Left plot represents various pipeline parameter selections. Right plot

displays ℓ2-norm (of processed images between the adversarially trained Φ̃
para

Proc and

the default Φ
para

Proc
) versus attained task model accuracy. (b): Processed samples

from the drift forensics after 20 epochs with various regularization weights λ. (c):

Similar results for Raw-Drone. Lower regularization results in a larger adversarial

optimization search space. Forensics loss refers to the binary cross entropy and Dice

loss used for the segmentation task model.

tion model (Figure 7) shows varied performance across data

model combinations, with average performance dropping

from 0.82 to 0.8 for classification and from 0.71 to 0.65 for

segmentation. Drift synthesis results were compared to the

Common Corruptions Benchmark [31], showing more se-

vere performance drops for common corruptions. Physical

faithfulness of test cases greatly impacts model selection

decisions, with no overlap observed between top-3 training

data models for classification when comparing ISP and com-

mon corruptions (refer to numbers 1-3 in Figures 2 and 7).

Following ideas developed by Krikamol Muandet’s [57],

data models could aid targeted generalization, serving task

models with the appropriate data model for each deployment

environment. Finally, drift synthesis permits validation with-

out physical measurement, but requires access to raw data

and knowledge of the data model specification.
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3 Drift adjustments with Φ
para

Proc

(a) Low intensity (0.001) XRAW with Φ
para
Proc (b) High intensity (1.0) XRAW with Φ

para
Proc

Frozen Learned Validation metric Frozen Learned Validation metric Raw comparison
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Figure 4: Low (a) and high (b) intensity images processed by a frozen and a learned pipeline. This type of drift optimization would not be possible with processed data. The

plots columns three and six display the mean of validation metrics over five cross validation runs. Column seven shows additional results on raw data for comparison. Error bars

are reported as one standard deviation. Optimization step 1439 and 915 correspond to epoch 60 into training.

2.2. Drift forensics

Products with machine learning components like medical

devices or autonomous vehicles require clear specification

of usage limitations. Our solution, Φ
para
Proc, enables analysis

of task model susceptibility to dataset drift using adversarial

search, differentiating it from related work that applies gra-

dient updates to individual images rather than data model

parameters. We identify risky data model parameter con-

figurations for task model operation, reflecting potential

changes in data model parameters like altering camera ISPs.

These parameters are kept within constraints of physical

faithfulness while deteriorating task model performance.

Sensitivity of the classification task model to changes in

data model parameters is depicted in Figure 3. Interest-

ingly, larger changes in the resulting RGB images don’t

necessarily lead to the most severe task model performance

degradation. This emphasizes the need for precise data mod-

els for dataset drift validation. Practical use-cases of drift

forensics include providing a forensic signature to a licensee

detailing data model parameters that maintain task model

performance. However, performing drift forensics requires

access to raw data and data models.

2.3. Drift optimization

The previous section demonstrated how raw data and a dif-

ferentiable data model can identify and test unfavorable data

models. We extend this concept to optimize the data itself,

creating a "beneficial drift". Two settings are considered:

"learned", where both data and task model parameters are

optimized, and "frozen", where only task model parameters

are optimized. The "learned" model can increase accuracy

by up to 25% with less variance (Figure 4 (a)). However,

this was not seen in low-resolution tasks like segmentation.

"Learned" models can also produce visual artifacts that may

improve stability and generalization. Similarly positive re-

sults were observed under varying conditions (Figure 4 (b)).

We’ve also investigated how parameterized data models

can optimize drift under constraints, and the potential of

learning directly on raw data for better task performance.

Optimizing drift can enhance task model performance and

adapt traditionally human-optimized imaging pipelines for

ML models, beneficial in limited-resource situations. How-

ever, this doesn’t work for all tasks and requires raw sensor

access. The end goal may be to train on RAW data, with

current methods serving as transitional solutions.

3. Discussion

In this manuscript we studied the potential of differentiable

data models for images, paired with raw data, to control

dataset drift. This significant challenge affects numerous

machine learning disciplines. Drift synthesis enables the

creation of physically faithful drift test cases, leading to

less severe performance drops. This allows model selection

and new ways to think about generalization. Drift synthe-

sis could be beneficial for various domains including data

synthesis and precise data models [63; 62]. Drift forensics

identify and document data model limitations, enabling pre-

cision to satisfy regulatory constraints [27; 93; 59]. Drift op-

timization with differentiable data models enhances stability

and speed in learning, which could be valuable in areas such

as federated learning or domain adaptation [79; 78; 97; 10].

However, it may not work across all tasks. Lastly, raw data

usage needs to be more accessible to researchers for more

physically faithful data models [28; 64; 101; 99; 38; 74].

We release two raw image datasets to aid this endeavor. Bet-

ter APIs to optical hardware can also help in providing more

accessible raw data.

How far we can push the gradient into the real world is an

interesting future direction for data modelling. Including

more parts of the data acquisition hardware into the data

model and consequently the machine learning optimization

pipeline appears feasible [98] and represents an important

next step in aligning machine learning with real world data

infrastructures.
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Use of Personal Data and Human Subjects The mi-

croscopy slides were purchased from a commercial lab ven-

dor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany)

who attained consent. The drone dataset does not directly re-

late to people. Instances with potential PIIs such as faces or

license plates were removed. Full datasheet documentation

following [24] can be found in Appendix B.5.2.

Negative Societal Impact Machine learning risk manage-

ment, such as the drift controls, can make ML deployment

possible and safer. More deployment translates to increases

in automation. A net risk-benefit analysis of automation

is beyond the scope of this manuscript. What we do know

is that steel can be cast into ploughs and swords. We are

against the use of our findings for the latter purpose.
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A. Appendices

B. Preliminaries: a data model for images

Before proceeding with a description of the methods we use to obtain the data models ΦProc in this study, let us briefly

review the distinction between raw data xRAW, processed image v and the mechanisms ΦProc∶R
H,W

→ R
C,H,W by which

image data transitions between these states3. Image acquisition has traditionally been optimized for the human perception

of a scene [34; 73]. Human eyes detect only the visible spectrum of electromagnetic radiation, hence imaging cameras

in different application domains such as medical imaging or remote sensing are usually calibrated to aid the human eye

perform a downstream task. This process that gives rise to optical image data, which ultimately forms the backbone for any

machine learning downstream, is rarely considered in the machine learning literature. Conversely, most research to date has

been conducted on processed RGB image representations. The raw sensor image xRAW obtained from a camera differs

substantially from the processed image that is used in conventional machine learning pipelines. The xRAW state appears

like a grey scale image with a grid structure (see xraw in Figure 1). This grid is given by the Bayer color filter mosaic,

which lies over sensors [7]. The final RGB image v is the result of a series of transformations applied to xRAW. For many

steps in this process different possible algorithms exist. Starting from a single xRAW, all those possible combinations can

generate an exponential number of possible images that are slightly different in terms of colors, lighting and blur - variations

that contribute to dataset drift. In Figure 1 a conventional pipeline from xRAW to the final RGB image v is depicted. Here,

common and core transformations are considered. Note that depending on the application context it is possible to reorder or

add additional steps. The symbol Φi is used to denote the ith transformation and vi (view) for the output image of Φi. The

first step of the pipeline is black level correction ΦBL, which removes any constant offset. The image vBL is a grey image

with a Bayer filter pattern. A demosaicing algorithm ΦDM is applied to construct the full RGB color image [44]. Given

vDM, intensities are adjusted to obtain a neutrally illuminated image vWB through a white balance transformation ΦWB.

By considering color dependencies, a color correction transformation ΦCC is applied to balance hue and saturation of the

image. Once lighting and colors are corrected, a sharpening algorithm ΦSH is applied to reduce image blurriness. This

transformation can make the image appear more noisy. For this reason a denoising algorithm ΦDN is applied afterwards

[26; 92]. Finally, gamma correction, ΦGC, adjusts the linearity of the pixel values. For a closed form description of these

transformations see Section 1.2. Compression may also take place as an additional step. It is not considered here as the

input image size is already small. Furthermore, the effect of compression on downstream task model performance has been

thoroughly examined before [20; 37; 100; 67; 66]. However, users of our code can add this step or reorder the sequence of

steps in the modular processing object class per their use case needs4.

B.1. Data models details

The second ingredient to this study are the data models of image processing. Image data transitions from a raw state xRAW to

processed image v via image signal processing ΦProc∶R
H,W

→ R
C,H,W [73]. Raw sensor images (xRAW) from cameras are

different from conventional machine learning input, appearing as a grey scale image with a grid structure due to the Bayer

color filter mosaic [7]. These images undergo multiple transformations to form the final RGB image v, generating numerous

slightly different images, contributing to dataset drift. The process is illustrated in Figure 1, including transformations

such as black level correction, demosaicing, white balance, color correction, sharpening, denoising, and gamma correction

[44; 26; 92]. Compression, not discussed here, is also applicable and can be added or reordered in the modular processing

object class as per use-case requirements.

Let (XRAW , Y ) ∶ Ω→ R
H,W

×Y be the raw sensor data generating random variable on some probability space (Ω,F ,P),
with Y = {0,1}K for classification and Y = {0,1}H,W for segmentation. Let ΦTask ∶ R

C,H,W
→ Y be the task model

determined during training. The inputs that are given to the task model ΦTask are the outputs of the data model ΦProc. We

distinguish between the raw sensor image xRAW and a view v =ΦProc(xRAW) of this image, where ΦProc∶R
H,W

→ R
C,H,W

models the transformation steps applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a task model ΦTask ∶ R
C,H,W

→ Y within a fixed class of task

modelsH that minimizes the expected loss wrt. the loss function L ∶ Y ×Y → [0,∞), that is to find Φ
⋆

Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )] (8)

3We recommend [73] for a good introduction to the physics of digital optical imaging.
4See pipeline_torch.py and pipeline_numpy.py in our code.
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Data models Used functions
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Table 1: Abbreviations of the twelve configurations of the static data model Φstat
Proc used in the drift synthesis experiments.

is attained. Towards that goal, ΦTask is determined during training such that the empirical error

1

N

N

∑
n=1

L (ΦTask(vn), yn) (9)

is minimized over a sample S = ((v1, y1), ..., (vN , yN)) of views. Modelling in the conventional machine learning

setting begins with the image data generating random variable (V , Y ) = (ΦProc(XRAW ), Y ) and the target distribution

Dt = P ○ (V , Y )−1. Given a dataset drift Ds = P ○ (Ṽ , Y )−1 /= Dt, as specified in Equation (1), without a data model we

have little recourse to disentangle reasons for performance drops in ΦTask. To alleviate this underspecification, an explicit

data model is needed. We consider two such models in this study: a static model Φstat
Proc and a parametrized model Φ

para
Proc.

In the following, we denote by xRAW ∈ [0,1]H,W the normalized raw image, that is a grey scale image with a Bayer filter

pattern normalized by 216 − 1, i.e.

xRAW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 . . . A
1,W

2

. . .

. . .

. . .

AH
2
,1 . . . AH

2
,W

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Ah,j = [r2h+1,2w+1 g2h+1,2w

g2h,2w+1 b2h,2w
] , (10)

where the values r2h+1,2w+1, g2h+1,2w, g2h,2w+1, b2h,2w correspond to the values measured through the different sensors and

normalized by 216 − 1. We provide here a precise description of the transformations that we consider in our static model

Φ
stat
Proc, followed by a description how to convert this static model into a differentiable, parametrized model Φ

para
Proc.

B.1.1. THE STATIC DATA MODEL Φ
STAT

PROC

Following common steps in ISP, the static data model is defined as the composition

Φ
stat
Proc =ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL, (11)

mapping a raw sensor image to a RGB image. We note that other data model variations, for example by reordering or adding

steps, are feasible. The static data models allow the controlled synthesis of different, physically faithful views from the

same underlying raw sensor data by manually changing the configurations of the intermediate steps. Fixing the continuous

features, but varying ΦDM, ΦSH and ΦDN results in twelve different views for the configurations considered here. Samples

for each of the twelve data models are provided in Figure 5. The individual functions of the composition Φ
stat
Proc can be found

in Appendix B.1.3.
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Figure 5: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve static data models Φstat
Proc used for

the drift synthesis experiments in Section 2.1. A version with higher resolution is omitted here to save space and can instead

be found in Figure 6 in the appendices.

An overview of the data model configurations and their corresponding abbreviations can be found alongside processed

samples in Table 1 and Figure 5.

B.1.2. THE PARAMETRIZED DATA MODEL Φ
PARA

PROC

For a fixed raw sensor image, the parametrized data model Φ
para
Proc maps from a parameter space Θ to a RGB image. It is

similar to the static data model with the notable difference that each processing step is differentiable wrt. its parameters θ.

This allows for backpropagation of the gradient from the output of the task model ΦTask through the data model ΦProc all the

way back to the raw sensor image xRAW to perform drift forensics and drift adjustments. Hence, we aim to design a data

model Φ
para
Proc ∶ R

H,W
×Θ→ R

C,H,W that is differentiable in θ ∈ Θ satisfying

Φ
stat
Proc =Φ

para
Proc (⋅,θstat) (12)

for some choice of parameters θ
stat

and some fixed configuration of the static pipeline Φstat
Proc. Using the individual functional

components specified in Appendix B.1.4, we define for θ = (θ1, ...,θ7) ∈ Θ the parametrized processing model

Φ
para

Proc ∶ [0,1]3,H,W
×Θ→ [0,1]3,H,W , (xRAW,θ)↦ v (13)

by the composition

v = (Φpara

GC
(⋅,θ7) ○Φ

para

DN (⋅,θ6) ○Φ
para

SH
(⋅,θ5) ○Φ

para

CC
(⋅,θ4) ○Φ

para

WB (⋅,θ3) ○Φ
para

DM (⋅,θ2) ○Φ
para

BL (⋅,θ1)) (xRAW) . (14)

The operations used above are differentiable except for the clipping operation in the GC that is a.e.-differentiable5, since the

set {0,1} of non-differentiable points has measure zero. Assuming in addition that P ((vDN)c,h,w ∈ {0,1}) = 0 holds true

for the entries of vDN results in an a.e.-differentiable processing model. We further say that Φ
para
Proc is differentiable, noting

that this holds only a.e. under the aforementioned assumption.

B.1.3. STATIC DATA MODEL Φ
STAT

PROC

If not stated otherwise, writing the equation vc,h,w = ac,h,w + bc,h,w defines vc,h,w for all 1 ≤ c ≤ 3, 1 ≤ h ≤ H and

1 ≤ h ≤W .

Black level correction (BL) removes thermal noise and readout noise generated from the camera sensor. The transformation

is given by

ΦBL ∶ [0,1]H,W
→ [0,1]H,W ,xRAW ↦ vBL, (15)

5a.e. stands for almost everywhere
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with

(vBL)2h+1,2w+1 = x2h+1,2w+1 − bl1

(vBL)2h,2w+1 = x2h,2w+1 − bl2

(vBL)2h+1,2w = x2h+1,2w − bl3

(vBL)2h,2w = x2h,2w − bl4,

By design of bl ∈ R4, black level correction ensures that vBL is again an element of [0,1]H,W .

Demosaicing (DM) is applied to reconstruct the full RGB color image through interpolation. We use one out of the

three demosaicing algorithms BayerBilinear (ΦBil
DM), Menon2007 (ΦMen

DM ) and Malvar2004 (ΦMal
DM) from the Python package

color-demosaicing and denote this transformation by the map

ΦDM ∶ [0,1]H,W
→ [0,1]3,H,W ,v ↦ vDM. (16)

White balance (WB) is applied to obtain a neutrally illuminated image. The transformation is given by

ΦWB ∶ [0,1]3,H,W
→ [0,1]3,H,W ,v ↦ vWB, (17)

where wb ∈ [0,1]3 adjusts the intensities by

(vWB)c,h,w = wbc ⋅ (vDM)c,h,w. (18)

Color correction (CC) balances the saturation of the image by considering color dependencies. Let M ∈ R
3,3 be the color

matrix. The transformation is defined by

ΦCC ∶ [0,1]3,H,W
→ R

3,H,W ,v ↦ vCC, (19)

where

vCC =

⎡⎢⎢⎢⎢⎢⎣
(vCC)1,h,w(vCC)2,h,w(vCC)3,h,w

⎤⎥⎥⎥⎥⎥⎦
=M

⎡⎢⎢⎢⎢⎢⎣
(vWB)1,h,w(vWB)2,h,w(vWB)3,h,w

⎤⎥⎥⎥⎥⎥⎦
. (20)

The entries of the resulting vCC are no longer restricted to [0,1].
Sharpening (SH) reduces the blurriness of an image. We use the two methods sharpening filter (ΦSF

SH) and unsharp

masking (ΦUM
SH ) that are applied after a transformation of the view vCC to the Y UV -color space. To convert the view to the

Y UV -color space we use the skimage.color function rgb2yuv (ΦY UV ). The sharpening filter

SF ∶ R3,H,W
→ R

3,H,W , (21)

is defined by a channel-wise convolution

(SF (v))c,h,w = ((vc ⋆ k)h,w)c with k ∶=

⎡⎢⎢⎢⎢⎢⎣
0 −1 0

−1 5 −1

0 −1 0

⎤⎥⎥⎥⎥⎥⎦
(22)

of the view

v =ΦY UV (vCC). (23)

For unsharp masking we use the ski.filters function unsharp_mask modeled by UM . To formally define the

sharpening we write

ΦSH ∶ R
3,H,W

→ R
3,H,W ,v ↦ vSH (24)

where

vSH = algo ○ΦY UV (vCC) with algo ∈ {SH,UM}. (25)

https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_bilinear.html#colour_demosaicing.demosaicing_CFA_Bayer_bilinear
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_Menon2007.html#colour_demosaicing.demosaicing_CFA_Bayer_Menon2007
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_Malvar2004.html#colour_demosaicing.demosaicing_CFA_Bayer_Malvar2004
https://colour-demosaicing.readthedocs.io/en/latest/colour_demosaicing.bayer.html
https://scikit-image.org/docs/dev/api/skimage.color.html
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2yuv
https://scikit-image.org/docs/stable/api/skimage.filters.html
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.unsharp_mask
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Denoising (DN) reduces the noise in an image that is (partly) introduced by SH and transforms the Y UV -color space view

back to the RGB-color space. For the latter transformation, the skimage.color function yuv2rgb (Φ−1Y UV ) is used.

We apply one out of the two methods Gaussian denoising (ΦGD
DN) and Median denoising (ΦGD

DN). For Gaussian denoising, we

apply a Gaussian filter (GF) with standard deviation of σ = 0.5 from the scipy.ndimage package. For median denoising

we apply a median filter (MF of size 3 from the scipy.ndimage package. Formally, this reads as

ΦDN ∶ R
3,H,W

→ R
3,H,W ,v ↦ vDN (26)

where

vDN =Φ
−1

Y UV ○ algo(vSH) with algo ∈ {GF,UM}. (27)

Gamma correction (GC) equilibrates the overall brightness of the image. First, the entries of the view vDN are clipped to[0,1] leading to (vCP )c,h,w = (vDN)c,h,w 1{0≤(vDN)c,h,w≤1} + 1{(vDN)c,h,w>1}. (28)

Second, the brightness adjusting transformation is defined by

ΦGC ∶ R
3,H,W

→ [0,1]3,H,W ,v ↦ vGC = (vCP ) 1

γ (29)

for some γ > 0 applied element-wise. Note that zero-clipping is necessary for vGC to be well-defined.

In total, we define the composition

Φ
stat
Proc ∶ [0,1]H,W

↦ [0,1]3,H,W (30)

of the above steps

Φ
stat
Proc ∶=ΦGC ○ΦDN ○ΦSH ○ΦCC ○ΦWB ○ΦDM ○ΦBL (31)

and call Φstat
Proc the static pipeline.

https://scikit-image.org/docs/dev/api/skimage.color.html
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.yuv2rgb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://docs.scipy.org/doc/scipy/reference/reference/ndimage.html#module-scipy.ndimage
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/reference/ndimage.html#module-scipy.ndimage
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Figure 6: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve pipelines used in the drift synthesis

experiments. The legend for abbreviations can be found in Table 1.
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B.1.4. PARAMETRIZED DATA MODEL Φ
PARA

PROC

Black level correction (BL) For the parametrized black level correction define the map

Φ
stat
BL ∶ [0,1]H,W

×R
4
→ R

H,W , (xRAW,θ1)↦ vBL =ΦBL(xRAW)∣bl=θ1
. (32)

and set Θ1 ∶= R
4.

Demosaicing (DM) We first convert vBL to a three channel image [R,G,B] ∈ R3,H,W where the entries of R,G and B

are zero except

R2h+1,2w+1 = vBL2h+1,2w+1
, B2h,2w = vBL2h,2w

,

G2h+1,2w = vBL2h+1,2w
, G2h,2w+1 = vBL2h,2w+1

.

To parametrize Φ
Bil
DM define the map

Φ
para
DM ∶ [0,1]H,W

×R
3,3,3
→ R

3,H,W , (vBL,θ2)↦ vDM (33)

with θ2 = [k1,k2,k3], where the kernels k1,k2,k3 ∈ R
3,3 are separately applied to each color channel resuling in

vDM1,h,w
= (R ⋆ k1)h,w

vDM2,h,w
= (G ⋆ k2)h,w

vDM3,h,w
= (B ⋆ k3)h,w .

The source code of BayerBilinear shows that the parameter choice

k1 = k3 =

⎡⎢⎢⎢⎢⎢⎣
0 0.25 0

0.25 1 0.25

0 0.25 0

⎤⎥⎥⎥⎥⎥⎦
and k2 =

⎡⎢⎢⎢⎢⎢⎣
0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

⎤⎥⎥⎥⎥⎥⎦
(34)

leads to

Φ
Bil
DM =Φ

para
DM(⋅,θ2). (35)

Towards the definition of the parameter space set Θ2 ∶= R
3,3,3
×Θ1.

White balance (WB) For the parametrized white balance define the map

Φ
para
WB ∶ R

3,H,W
×R

3
→ R

3,H,W , (vDM,θ3)↦ vWB =ΦWB(vDM)∣wb=θ3
(36)

and set Θ3 ∶= R
3
×Θ2.

Color correction (CC) For the parametrized color correction define the map

Φ
para

CC ∶ R
3,H,W

×R
3,3
→ R

3,H,W , (vWB,θ4)↦ vCC =ΦCC(vWB)∣M=θ4
(37)

and set Θ4 ∶= R
3,3
×Θ3

Sharpening (SH) We parametrize the sharpening filter configuration of the static pipeline, by using the entries of k ∈ R3,3

defined in (22) as parameters leading to

Φ
para

SH ∶ R
3,H,W

×R
3,3
→ R

3,H,W , (vCC,θ5)↦ vSH =ΦSH(vCC)∣k=θ5
(38)

and Θ5 ∶= R
3,3
× θ4.

Denoising (DN) We parametrize the configuration where the Gaussian denoising method is applied. Applying the Gaussian

filter from scipy.ndimage with σ = 0.5 is equivalent to a convolution of the view in the Y UV -color space with a

specific kgauss ∈ R
5,5. For the specific values of kgauss see K_BLUR at the code of the parametrized pipeline. Therefore, to

parametrize DN we define the map

Φ
para
DN ∶ R

3,H,W
×R

5,5
→ R

3,H,W , (vSH,θ6)↦ vDN =ΦDN(vSH)∣kgauss=θ6
(39)

https://colour-demosaicing.readthedocs.io/en/latest/_modules/colour_demosaicing/bayer/demosaicing/bilinear.html#demosaicing_CFA_Bayer_bilinear
https://colour-demosaicing.readthedocs.io/en/latest/generated/colour_demosaicing.demosaicing_CFA_Bayer_bilinear.html#colour_demosaicing.demosaicing_CFA_Bayer_bilinear
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://anonymous.4open.science/r/cvpr2022-submission4471/processing/pipeline_torch.py
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and set Θ6 ∶= R
5,5
×Θ5

Gamma correction (GC) Define the parametrized gamma correction by

Φ
para

GC ∶ R
3,H,W

×R→ [0,1]3,H,W , (vDN,θ7)↦ v = vGC =ΦGC(vDN)∣γ=θ7
. (40)

The following values were used to initialize Φ
para
Proc (both "Frozen" and "Learned") in experiment Section 2.3:

1 class ParametrizedProcessing(nn.Module):

2 """Differentiable processing pipeline via torch transformations

3

4 Args:

5 camera_parameters (tuple(list), optional): applies given camera parameters in

processing

6 track_stages (bool, optional): whether or not to retain intermediary steps in

processing

7 batch_norm_output (bool, optional): adds a BatchNorm layer to the end of the

processing

8 """

9

10 def __init__(self, camera_parameters=None, track_stages=False, batch_norm_output=True)

:

11 super().__init__()

12 self.stages = None

13 self.buffer = None

14 self.track_stages = track_stages

15

16 if camera_parameters is None:

17 camera_parameters = DEFAULT_CAMERA_PARAMS

18

19 black_level, white_balance, colour_matrix = camera_parameters

20

21 self.black_level = nn.Parameter(torch.as_tensor(black_level))

22 self.white_balance = nn.Parameter(torch.as_tensor(white_balance).reshape(1, 3))

23 self.colour_correction = nn.Parameter(torch.as_tensor(colour_matrix).reshape(3, 3)

)

24

25 self.gamma_correct = nn.Parameter(torch.Tensor([2.2]))

26

27 self.debayer = Debayer()

28

29 self.sharpening_filter = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)

30 self.sharpening_filter.weight.data[0][0] = K_SHARP.clone()

31

32 self.gaussian_blur = nn.Conv2d(1, 1, kernel_size=5, padding=2, padding_mode=’

reflect’, bias=False)

33 self.gaussian_blur.weight.data[0][0] = K_BLUR.clone()

34

35 self.batch_norm = nn.BatchNorm2d(3, affine=False) if batch_norm_output else None

36

37 self.register_buffer(’M_RGB_2_YUV’, M_RGB_2_YUV.clone())

38 self.register_buffer(’M_YUV_2_RGB’, M_YUV_2_RGB.clone())

39

40 self.additive_layer = None

where

1 K_G = torch.Tensor([[0, 1, 0],

2 [1, 4, 1],

3 [0, 1, 0]]) / 4

4

5 K_RB = torch.Tensor([[1, 2, 1],

6 [2, 4, 2],

7 [1, 2, 1]]) / 4

8

9 M_RGB_2_YUV = torch.Tensor([[0.299, 0.587, 0.114],

10 [-0.14714119, -0.28886916, 0.43601035],

11 [0.61497538, -0.51496512, -0.10001026]])

12 M_YUV_2_RGB = torch.Tensor([[1.0000000000e+00, -4.1827794561e-09, 1.1398830414e+00],

13 [1.0000000000e+00, -3.9464232326e-01, -5.8062183857e-01],

14 [1.0000000000e+00, 2.0320618153e+00, -1.2232658220e-09]])

15

16 K_BLUR = torch.Tensor([[6.9625e-08, 2.8089e-05, 2.0755e-04, 2.8089e-05, 6.9625e-08],

17 [2.8089e-05, 1.1332e-02, 8.3731e-02, 1.1332e-02, 2.8089e-05],

18 [2.0755e-04, 8.3731e-02, 6.1869e-01, 8.3731e-02, 2.0755e-04],

19 [2.8089e-05, 1.1332e-02, 8.3731e-02, 1.1332e-02, 2.8089e-05],

20 [6.9625e-08, 2.8089e-05, 2.0755e-04, 2.8089e-05, 6.9625e-08]])

21 K_SHARP = torch.Tensor([[0, -1, 0],

22 [-1, 5, -1],

23 [0, -1, 0]])

24 DEFAULT_CAMERA_PARAMS = (

25 [0., 0., 0., 0.],

26 [1., 1., 1.],

27 [1., 0., 0., 0., 1., 0., 0., 0., 1.],

28 )

Note that the camera parameters are camera, and conversely in our case dataset, dependent and defined in the dataset classes.
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B.2. Description of the task models ΦTask

Two task models are employed in the experiments. For the classification task on the Raw-Microscopy dataset a 18-

layer residual net (ResNet18) [30] was used as reference task model. To segment cars from the Raw-Drone dataset the

convolutional neural network proposed in [72] (U-Net) was used. Both task models were trained using common data

augmentations on processed views v of the image measurements to avoid naive robustness failures. A detailed description

of the task models and their hyperparameters is given below.

Classification Segmentation

Φ
T

as
k

ResNet18 based on [30] U-Net++ based on [72]

trained with Adam [39] for 100 epochs trained with Adam for 100 epochs

learning rate: 10−4 learning rate: 7.5 ⋅ 10−5

mini-batch size: 128 mini-batch size: 12

Table 2: Summary of the training procedure for both task models.

Table 3: A set of random test samples for the segmentation task under learned processing. Top row: Targets, middle row:

predictions of the task model after the first epoch, last row: predictions of the task model after the last epoch.

ResNet18 This model is designed to classify images from ImageNet [76] and has therefore an output dimension of 1000. In

order to use the model to classify images from Raw-Microscopy, we changed the output dimension of the fully-connected

layer to nine. The model was trained for 100 epochs using pre-trained ResNet features. Hyperparameters were kept

constant across all runs to isolate the effect of varying image processing pipelines. For implementation the code provided

at https://pytorch.org/hub/pytorch_vision_resnet/ was used. The model consists of 34 layers with

approximately 11.2 million trainable parameters. The storage size of the model is 44.725 MB.

U-Net++ The model was trained for 100 epochs using pretrained ResNet features as the encoder of the U-Net++. Hyperpa-

rameters were kept constant across all runs to isolate the effect of varying image processing pipelines. For implementation

we used the code provided at https://github.com/qubvel/segmentation_models.pytorch. The model

https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/qubvel/segmentation_models.pytorch
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has approximately 26.1 million trainable parameters. The storage size of the model is 104.315 MB.

Raw training In the drift optimization experiments of Section 2.3 the raw data is demosaiced using class

RawToRGB(nn.Module) from /processing/pipeline_torch.py in the data model code. Then task mod-

els are tuned to raw data under the same regimes described above.

For a summary of the training procedure see Table 2.

/processing/pipeline_torch.py
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B.3. Additional results

B.3.1. DRIFT SYNTHESIS

1 Drift synthesis with Φ
stat
Proc: Drone

Figure 7: 5-fold cross-validation results of the Raw-Drone drift synthesis experiments. Each cell contains the average

IoU with a color coded border for the standard deviation. Task models were trained on the data model on the vertical axis

and then tested on processed data as indicated on the horizontal axis. Numbers 1-3 left to the vertical axis denote the

ranking of task models according to their average IoU across all test pipelines respective corruptions. Stars denote the train

pipeline under which the task model performed best on the respective test pipeline/corruption. Full ranking results can be

found in Tables 5, 8 and 9 of Appendix B.3. Left: Varying the data model leads to mixed performance drops. Diagonal is

ΦProc = Φ̃Proc. Right: Comparison to the corruption benchmark at medium severity (level 3). The average performance drop

is more than four times higher compared to data model variations. First column is ΦProc = Φ̃Proc. Bottom: Visual inspection

of worst case (globally worst scoring) train/test pipelines.
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Microscopy Drone

Average accuracy Average IoU

Learned (low) 0.75 ± 0.09 0.59 ± 0.05

Frozen (low) 0.54 ± 0.21 0.59 ± 0.05

Learned (high) 0.78 ± 0.08 0.74 ± 0.04

Frozen (high) 0.67 ± 0.14 0.71 ± 0.05

Direct raw 0.75 ± 0.07 0.60 ± 0.07

Table 4: Tabular summary of the drift optimization results. The average accuracy and standard deviations over cross-

validation runs and training steps are displayed, summarizing both the stability and converge trajectory for each setting.

Microscopy-ISP Microscopy-CC Drone-ISP Drone-CC

Rank Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score

1 ma,s,me 0.83 bi,u,me 0.63 ma,u,ga 0.68 ma,s,ga 0.60

2 ma,u,me 0.83 me,s,me 0.63 bi,s,ga 0.68 bi,s,ga 0.57

3 ma,u,ga 0.82 bi,u,ga 0.62 bi,s,me 0.67 me,s,ga 0.57

4 bi,s,me 0.81 ma,s,me 0.62 ma,s,me 0.67 ma,s,me 0.55

5 bi,u,me 0.81 me,u,me 0.62 me,u,ga 0.67 me,s,me 0.55

6 me,s,me 0.81 ma,s,ga 0.62 me,u,me 0.67 ma,u,ga 0.55

7 bi,s,ga 0.81 ma,u,me 0.61 ma,u,me 0.66 bi,s,me 0.54

8 me,s,ga 0.80 me,s,ga 0.60 ma,s,ga 0.66 ma,u,me 0.54

9 me,u,me 0.80 bi,s,me 0.59 bi,u,me 0.65 me,u,me 0.53

10 ma,s,ga 0.80 ma,u,ga 0.59 me,s,me 0.65 me,u,ga 0.51

11 bi,u,ga 0.79 bi,s,ga 0.58 me,s,ga 0.64 bi,u,me 0.48

12 me,u,ga 0.79 me,u,ga 0.58 bi,u,ga 0.61 bi,u,ga 0.46

Table 5: Rankings of task models from Section 2.1 trained on different data models (columns 2, 4, 6, 8) according to

their average accuracy or IoU (columns 3, 5, 7, 9) across all test pipelines respective corruptions. ISP corresponds to drift

synthesis with physically faithful data models, CC corresponds to common corruptions.

Microscopy-ISP

Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 ma,u,me ma,u,me ma,u,ga ma,u,ga ma,s,me ma,u,ga ma,u,ga ma,u,ga ma,u,me me,s,ga ma,u,ga ma,u,ga

2 ma,u,ga ma,u,ga bi,s,ga bi,s,ga bi,s,me me,s,ga ma,s,me ma,u,me ma,s,me ma,u,ga ma,u,me ma,u,me

3 bi,s,ga bi,s,ga ma,s,me ma,s,me bi,u,ga ma,s,ga ma,u,me ma,s,me bi,s,ga ma,s,ga ma,s,me ma,s,me

4 ma,s,me ma,s,me ma,u,me ma,u,me ma,u,me ma,s,me bi,s,ga me,u,me me,s,ga me,u,ga me,u,me me,u,me

5 bi,s,me bi,u,me me,u,me me,u,me bi,u,me ma,u,me me,u,me ma,s,ga bi,u,me me,s,me bi,s,ga bi,s,ga

6 bi,u,me me,u,me bi,u,me bi,u,me ma,u,ga me,s,me me,s,ga bi,s,ga ma,u,ga ma,u,me me,u,ga me,u,ga

7 me,s,me bi,s,me bi,s,me me,s,me me,s,me me,u,me me,s,me me,s,ga me,u,me ma,s,me me,s,me me,s,me

8 me,s,ga me,s,me me,s,me bi,u,ga bi,s,ga bi,u,me ma,s,ga me,s,me me,s,me me,u,me bi,s,me bi,s,me

9 me,u,me me,s,ga bi,u,ga bi,s,me me,s,ga me,u,ga bi,u,me bi,u,me bi,s,me bi,s,me me,s,ga me,s,ga

10 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,me bi,s,me ma,s,ga bi,s,ga ma,s,ga ma,s,ga

11 bi,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,s,ga me,u,ga me,u,ga me,u,ga bi,u,me bi,u,me bi,u,me

12 me,u,ga bi,u,ga me,s,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga

Table 6: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test

pipeline (columns 2 - 13).

Microscopy-CC

Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,u,me ma,u,me bi,u,me bi,u,me ma,s,ga bi,s,ga bi,s,ga bi,s,ga me,s,me ma,s,me bi,s,ga

2 ma,u,ga ma,s,ga ma,s,ga me,u,me bi,u,me ma,u,me ma,u,ga bi,u,ga ma,s,me me,u,me ma,u,ga

3 bi,s,ga me,u,me me,s,me bi,u,ga me,s,me ma,u,ga ma,s,me me,u,ga bi,u,ga me,s,me ma,u,me

4 me,s,me me,s,ga ma,u,me me,s,me me,u,me bi,u,me ma,u,me ma,s,me ma,s,ga bi,u,ga ma,s,me

5 ma,s,me bi,u,me me,s,ga ma,s,me bi,u,ga me,u,me bi,u,me ma,u,me bi,s,me bi,s,ga me,u,me

6 me,u,me ma,u,ga me,u,me ma,u,me ma,s,me ma,s,me me,s,me bi,s,me bi,u,me bi,u,me me,s,ga

7 me,s,ga me,s,me bi,s,me ma,u,ga ma,u,me me,s,ga bi,u,ga bi,u,me me,s,ga ma,u,ga me,s,me

8 bi,u,me bi,s,me bi,u,ga me,s,ga me,s,ga ma,s,ga me,u,ga me,s,me ma,u,ga ma,s,ga bi,u,ga

9 bi,u,ga ma,s,me ma,s,me me,u,ga bi,s,me me,s,me me,u,me ma,s,ga me,u,ga bi,s,me bi,u,me

10 ma,s,ga bi,u,ga ma,u,ga ma,s,ga ma,u,ga bi,u,ga me,s,ga ma,u,ga bi,s,ga me,s,ga ma,s,ga

11 bi,s,me bi,s,ga bi,s,ga bi,s,me me,u,ga bi,s,me ma,s,ga me,u,me me,u,me me,u,ga me,u,ga

12 me,u,ga me,u,ga me,u,ga bi,s,ga bi,s,ga me,u,ga bi,s,me me,s,ga ma,u,me ma,u,me bi,s,me

Table 7: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test

corruptions (columns 2 - 12).
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Drone-ISP

Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 bi,s,me bi,s,ga bi,u,me bi,u,me ma,u,ga ma,s,ga ma,u,ga ma,u,ga ma,s,me ma,s,ga ma,u,ga ma,u,ga

2 bi,u,me bi,s,me bi,s,me bi,s,me ma,s,me me,s,ga me,u,me me,u,me ma,s,ga me,s,ga me,u,me me,u,ga

3 ma,u,ga ma,u,ga bi,u,ga bi,u,ga bi,s,ga ma,s,me ma,u,me ma,u,me ma,u,ga ma,s,me ma,s,me me,u,me

4 bi,s,ga ma,s,me ma,u,ga ma,u,ga me,u,ga me,s,me bi,s,me bi,s,me bi,s,ga me,s,me me,u,ga ma,s,me

5 me,u,me me,u,ga me,u,me me,u,me ma,s,ga bi,s,ga ma,s,me ma,s,me me,u,ga bi,s,ga ma,u,me ma,u,me

6 bi,u,ga ma,s,ga bi,s,ga bi,s,ga ma,u,me ma,u,ga bi,s,ga bi,s,ga me,s,me ma,u,ga bi,s,me bi,s,me

7 ma,s,me ma,u,me ma,u,me ma,u,me me,u,me me,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,u,me bi,s,ga

8 me,u,ga me,s,ga ma,s,me ma,s,me me,s,me me,u,me bi,u,me bi,u,me me,u,me me,u,me bi,s,ga bi,u,me

9 ma,u,me me,u,me me,u,ga me,u,ga bi,s,me ma,u,me bi,u,ga ma,s,ga ma,u,me ma,u,me me,s,me ma,s,ga

10 me,s,me me,s,me me,s,me me,s,me me,s,ga bi,s,me ma,s,ga me,s,me bi,s,me bi,s,me bi,u,ga me,s,me

11 ma,s,ga bi,u,me me,s,ga ma,s,ga bi,u,me bi,u,me me,s,me bi,u,ga bi,u,me bi,u,me ma,s,ga bi,u,ga

12 me,s,ga bi,u,ga ma,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga

Table 8: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test

pipeline (columns 2 - 13).

Drone-CC

Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,ga bi,s,ga ma,s,ga ma,s,ga

2 bi,s,ga me,s,ga me,s,ga me,s,ga me,s,ga bi,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,me ma,u,ga

3 me,s,ga bi,s,ga bi,s,ga me,s,me bi,s,ga ma,s,me bi,s,ga me,s,me ma,s,me ma,u,ga ma,s,me

4 ma,s,me me,s,me ma,s,me bi,s,ga ma,s,me ma,u,ga me,s,ga ma,s,me me,s,me me,u,ga bi,s,ga

5 ma,u,ga ma,u,ga me,s,me ma,u,ga me,s,me bi,u,me ma,u,me bi,s,me ma,u,me me,s,ga bi,s,me

6 bi,s,me ma,u,me ma,u,ga ma,u,me ma,u,ga bi,s,me me,s,me ma,u,me ma,u,ga bi,s,ga bi,u,me

7 me,u,ga me,u,me ma,u,me me,u,me bi,s,me me,s,ga ma,s,me ma,u,ga me,u,me bi,s,me me,s,ga

8 bi,u,me ma,s,me bi,s,me ma,s,me ma,u,me ma,u,me bi,u,me me,s,ga bi,s,me me,s,me me,u,me

9 ma,u,me bi,s,me me,u,me bi,s,me me,u,me me,u,me me,u,me bi,u,me me,u,ga me,u,me me,u,ga

10 me,u,me me,u,ga me,u,ga me,u,ga me,u,ga me,s,me bi,u,ga bi,u,ga me,s,ga bi,u,me me,s,me

11 me,s,me bi,u,me bi,u,me bi,u,me bi,u,me me,u,ga ma,u,ga me,u,ga bi,u,me ma,u,me ma,u,me

12 bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga

Table 9: Ranking of task models from Section 2.1 trained under different train pipelines (rows) for each individual test

corruptions (columns 2 - 12).
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Figure 8: Experiment from Section 2.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [31]
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Figure 9: Experiment from Section 2.1 with strong severity (level 5) for the Common corruptions benchmark.
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Figure 10: Experiment from Section 2.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [31]
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Figure 11: Experiment from Section 2.1 with strong severity (level 5) for the Common corruptions benchmark.
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Figure 12: A comparative overview of the physically faithful data models (ISPs, top-left) and the Common Corruptions

(CC, top-right) used in the the drift synthesis experiments of Section 2.1. A matching heuristic based on possible visual

perception of the drift artifacts (top-middle) is provided for readers who would like to relate specific data models to specific

corruptions. However, we emphasize that this is a purely qualitative heuristic and has no metrological basis. Since CCs are

not physically faithful it is not clear how to relate them to actual variations in the optical data generating process. Finally,

corruptions that were excluded from the experiments in Section 2.1 are displayed (bottom). The CC examples where stitched

from the original paper [32] for authenticity.
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Augmentation testing Catalogue testing Data models

Simulation of test samples ✓ ✗ ✓

Physically faithful test samples ✗ ✓ ✓

Differentiable data model ✗ ✗ ✓

Table 10: Comparison of empirical dataset drift validation methods. Augmentation testing enables ad-hoc test case synthesis

but lacks physical faithfulness, unlike catalogue testing. Pairing raw data with data models allows for synthesis of physically

faithful test cases, and differentiable data models offer novel drift controls like drift forensics and adjustments.

B.4. Related work

While physically sound data models of images have to the best of our knowledge not yet found their way into the machine

learning and dataset drift literature, they have been studied in other disciplines, in particular physical optics and metrology.

Our ideas on data models and dataset drift controls we present in this manuscript are particularly indebted to the following

works.

Data models for images [87; 69] employ deep convolutional neural networks for modelling a raw image data processing

which is optimized jointly with the task model. In contrast, we employ a parametric data model with tunable parameters that

enables the modular drift forensics and synthesis presented later. [94] propose a differentiable image processing pipeline for

the purpose of camera lens manufacturing. Their goal, however, is to optimize a physical component (lens) in the image

acquisition process and no code or data is publicly available. Existing software packages that provide low level image

processing operations include Halide [68], Kornia [70] and the rawpy package [81] which can be integrated with our Python

and PyTorch code. We should also take note that outside optical imaging there are areas in machine learning and applied

mathematics, in particular inverse problems such as magnetic resonance imaging (MRI) or computed tomography, that make

use of known operator learning [51; 49] to incorporate the forward model in the optimization [14] or, as in the case of MRI,

learn directly in the k-space [102].

Drift synthesis As detailed in the introduction, the synthesis of realistic drift test cases for a task model in computer vision is

often done by applying augmentations directly to the input view vGC, e.g. a processed .jpeg or .png image. Hendrycks

et al. [31] have done foundational work in this direction developing a practical, standardized benchmark. However, there

is no guarantee that noise ξ added to a processed image v will be physically faithful, i.e. that v + ξ ∈ Φ̃Proc [XRAW].
This is problematic, as nuances matter [21] for assessing the cascading effects data models have on the task model ΦTask

downstream [5; 77]. For the same reason, the use of generative models [25] like GANs has been limited for test data

generation as they are known to hallucinate visible and less visible artifacts [17; 80]. Other approaches, like the WILDS

data catalogue [9; 41], build on manual curation of so called natural distribution shifts, or, like [84], on artificial worst case

constructions. These are important tools for the study of dataset drifts, especially those that are created outside the camera

image signal processing. Absent explicit, differentiable data models and raw sensor data, the shared limitation of catalogue

approaches is that metrologically faithful drift synthesis is not possible and the data generating process cannot be granularly

studied and manipulated.

Drift forensics Phan et al. [65] use a differentiable raw processing pipeline to propagate the gradient information back to the

raw image. Similar to this work, the signal is used for adversarial search. However, Phan et al. optimize adversarial noise on

a per-image basis in the raw space xRAW, whereas our work modifies the parameters of the data model ΦProc itself in pursuit

of harmful parameter configurations. The goal in this work is not simply to fool a classifier, but to discover failure modes

and susceptible parameters in the data model ΦProc that will have the most influence on the task model’s performance.

Drift optimization An explicit and differentiable image processing data model allows joint optimization together with

the task model ΦProc. This has been done for radiology image data [71; 86; 50] though the measurement process there

is different and the focus lies on finding good sampling patterns. For optical data, a related strand of work is modelling

inductive biases in the image acquisition process which is explained and contrasted to this work above [94; 35].

Raw image data Camera raw files contain the data captured by the camera sensors [7]. In contrast to processed formats

such as .jpeg or .png, raw files contain the sensor data with minimal processing [96; 58; 46]. The processing of the raw

data usually differs by camera manufacturer thus contributing to dataset drift. Existing raw data sets from the machine

learning, computer vision and optics literature can be organized into two categories. First, datasets that are sometimes
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treated - usually not by the creators but by users of the data - as raw data but which are in fact not raw. Examples for this

category can be found for both modalities considered here [11; 18; 3; 33; 12; 95; 22; 48; 53; 82; 103]. All of the preceding

examples are processed and stored in formats including .jpeg, .tiff, .svs, .png, .mp4 and .mov. Second, datasets

that are labelled raw data which are raw. In contrast to the labelled and precisely calibrated raw data presented here, existing

raw datasets [19; 15; 1; 29] are collected from various sources for image enhancement tasks without full specification of the

measurement conditions or labels for classification or segmentation tasks.
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Figure 13: Processed samples and labels of the two datasets, Raw-Microscopy (columns one to four) and Raw-Drone

(columns five and eight), that were acquired for the dataset drift study presented here.

B.5. Datasets details

B.5.1. DATA ACQUISITION

In the following, core information on the two acquired datasets is provided. In Appendix B.5.2 you can also find detailed

datasheets for both datasets, following the documentation good practices introduced by [24].

Raw-Microscopy Assessment of blood smears under a light microscope is a key diagnostic technique for many healthcare

services such as cancer treatment and kidney failure as well as blood disorder detection [6]. The creation of image datasets

and machine learning models on them has received wide interest in recent years [43; 56; 4]. Variations in the image

processing can affect the downstream task model performance [91]. Dataset drift controls can thus help to specify the

perimeter of safe application for a task model. A raw dataset was collected for that purpose. A bright-field microscope was

used to image blood smear cytopathology samples. The light source is a halogen lamp equipped with a 0.55 NA condenser,

and a pre-centred field diaphragm unit. Filters at 450 nm, 525 nm and 620 nm were used to acquire the blue, green and red

channels respectively. The condenser is followed by a 40× objective with 0.95 NA (Olympus UPLXAPO40X). Slides can

be moved via a piezo with 1 nm spatial resolution, in three directions. Focus was achieved by maximizing the variance of

the pixel values6. Images are acquired at 16 bit, with a 2560 × 2160 pixels CMOS sensor (PCO edge 5.5). The point-spread

function (PSF) was measured to be 450 nm with 100 nm nanospheres. Mechanical drift was measured at 0.4 pixels per

hour. Imaging was performed on de-identified human blood smear slides (Ma190c Lieder, J. Lieder GmbH & Co. KG,

Ludwigsburg/Germany). All slides were taken from healthy humans without known hematologic pathology. Imaging regions

were selected to contain single leukoytes in order to allow unique labelling of image patches, and regions were cropped to

256 × 256 pixels. All images were annotated by a trained hematological cytologist using the standard scheme of normal

leukocytes comprising band and segmented neutrophils, typical and atypical lymphocytes, monocytes, eosinophils and

basophils [47]. To soften class imbalance, candidates for rare normal leukocyte types were preferentially imaged, and enrich

rare classes. Additionally, two classes for debris and smudge cells, as well as cells of unclear morphology were included.

Labelling took place for all imaged cells from a particular smear at a time, with single-cell patches shown in random order.

Raw images were extracted using JetRaw Data Suite features. Blue, red and green channels are metrologically rescaled

independently in intensity to simulate a standard RGB camera condition. Some pixels are discarded complementary on each

channel in order to obtain a Bayer filter pattern.

Raw-Microscopy for segmentation comes with 940 raw images, twelve differently processed variants totaling 11280 images

and six additional raw intensity levels totaling 5640 samples.

Raw-Drone Automated processing of drone data has useful applications including precision agriculture [42] or environmen-

tal protection [36]. Variation in image processing has been shown to affect task model performance [52; 96], underlining

the need for drift controls. For the purposes of this study, a raw car segmentation dataset was created for the drone image

modality. A DJI Mavic 2 Pro Drone was used, equipped with a Hasselblad L1D-20c camera (Sony IMX183 sensor)

having 2.4 µm pixels in Bayer filter array. The lens has a focal length of 10.3mm. The f-number was set to N = 8, to

emulate the PSF circle diameter relative to the pixel pitch and ground sampling distance (GSD) as would be found on

images from high-resolution satellites. The PSF was measured to have a circle diameter of 12.5 µm. This corresponds to a

diffraction-limited system, within the uncertainty dominated by the wavelength spread of the image. Images were taken at

200 ISO, a gain of 0.528DN/e−. The 12-bit pixel values are however left-justified to 16-bits, so that the gain on the 16-bit

6Figure 14 in Appendix B.5.1 provides an illustration of the imaging setup.
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Figure 14: (a) An illustration of the imaging setup. (b) Datasets visualization. (Top-left) RGB raw microscopy classes are

shown. (Top-right) Drone raw images are shown with the segmentation mask applied over it. (Bottom) Different intensity

realizations are shown for the microscopy case. Images on the top are directly print out in the same scale of the original

image. Images in the bottom row are normalized on their own min and max values to highlight the role of noise levels on

low intensity images.

Composition of Raw-Microscopy

Type of instances Image and label

Objects on images White blood cells

Type of classes Morphological classes

Number of instances 940

Number of classes 9

Image size 256 by 256 pixels

Image format .tif

Raw image format Please see Section 1.1

Class Proportion in %

Basophil (BAS) 1.91

Eosinophil (EOS) 5.74

Smudge cell / debris (KSC) 17.34

atypical Lymphocyte (LYA) 3.19

typical Lymphocyte (LYT) 24.47

Monocyte (MON) 20.32

Neutrophil (band) (NGB) 0.85

Neutrophil (segmented) (NGS) 22.98

Image that could not be assigned a class (UNC) 3.19

Composition of Raw-Drone

Type of instances Image and mask

Objects on images Landscape shots from above

Number of instances 548

Number of original images 12

Image size 256 by 256 pixels

Mask size 256 by 256 pixels

Original image size 3648 by 5472

Image format .tif

Mask format .png

Raw image format .DNG

Table 11: Summaries of the compositions of Raw-Microscopy and Raw-Drone

numbers is 8.448DN/e−. The images were taken at a height of 250m, so that the GSD is 6 cm. All images were tiled in

256 × 256 patches. Segmentation masks were created to identify cars for each patch. From this mask, classification labels

were generated to detect if there is a car in the image. The dataset is constituted by 548 images for the segmentation task.

Raw-Drone for segmentation comes with 548 raw images, twelve differently processed variants totaling 6576 images and

six additional raw intensity levels totaling 3288 samples.



B.5.2. DATASHEETS

We follow the datasheets documentation framework proposed in [24], using the template https://de.overleaf.

com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth from Christian Garbin.

Datasheet for Raw-Microscopy

Motivation

For what purpose was the dataset created?

With Raw-Microscopy we provide a publicly available raw

image dataset in order to examine the effect of the image

signal processing on the performance and the robustness

of machine learning models. This dataset enables to study

these effects for a supervised multiclass classification task:

the classification of white blood cells (WBCs).

Who created this dataset (e.g., which team, research

group) and on behalf of which entity (e.g., company,

institution, organization)?

This dataset has been created by the Laboratory of Applied

Optics of the Micro-Nanotechnology group at HEPIA/HES-

SO, University of Applied Sciences of Western Switzerland.

Single-cell images were annotated by a trained cytologist.

Who funded the creation of the dataset?

The creation of the dataset has been funded by HEPIA/HES-

SO.

Composition

What do the instances that comprise the dataset repre-

sent (e.g., documents, photos, people, countries)?

An instance is a tuple of an image and a label. The image

shows a human WBCs and the label indicates the morpho-

logical class of this cell. The following eight morphological

classes appear in the dataset: Basophil (BAS), Eosinophil

(EOS), Smudge cell / debris (KSC), atypical Lymphocyte

(LYA), typical Lymphocyte (LYT ), Monocyte (MON), Neu-

trophil (band) (NGB), Neutrophil (segmented) (NGS). The

nith class consists of images that could not be assigned a

class (UNC) during the labeling process.

How many instances are there in total (of each type, if

appropriate)?

The data set consists of 940 instances. For the proportion of

each class in the dataset see table 12.

Does the dataset contain all possible instances or is it

a sample (not necessarily random) of instances from a

larger set?

The dataset does not contain all possible instances. It is

limited to WBC classes normally present in the peripheral

blood of healthy humans. In order to cope with intrinsic

class imbalance in cell distribution, rare cell class candidates

such as Basophils were preferentially imaged.

What data does each instance consist of? “Raw” data

(e.g., unprocessed text or images) or features?

Each instance consists of an image of 256 by 256 pixels.

The image is a raw image in .tiff format.

Is there a label or target associated with each instance?

Each instance is associated to a label, that indicates the

morphological class of the image.

Is any information missing from individual instances?

No information is missing.

Are relationships between individual instances made ex-

plicit (e.g., users’ movie ratings, social network links)?

No, relationships between individuals are not made explicit.

Are there recommended data splits (e.g., training, devel-

opment/validation, testing)?

There are no recommended data splits. All the data splits

that we used for our experiments were randomly picked.

Are there any errors, sources of noise, or redundancies

in the dataset?

To the best of our knowledge, there are no errors in the

dataset. However, a key source of variability between slides

from different laboratories and processing times is stain in-

tensity. The samples used in this work all come from the

same source, hence we assume the preanalytic treatment and

staining protocol to be similar. As all images were obtained

on the same microscopy equipment, focus handling and

illumination are identical for all samples. Image labelling

was performed by one trained morphologist with experi-

ence in hematological routine diagnostics. It is known that

morphology annotations are subject to inter- and intra-rater

https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth
https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth


variability. However, as we limit ourselves to normal WBCs

the labeling is expected to be stable.

Is the dataset self-contained, or does it link to or oth-

erwise rely on external resources (e.g., websites, tweets,

other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered

confidential (e.g., data that is protected by legal privilege

or by doctor-patient confidentiality, data that includes

the content of individuals non-public communications)?

The dataset consist of medical data, disclosing the morpho-

logical classes of single human WBCs. In principle, the

distribution of cell types conveys information on the health

state of a patient.

However, the subjects in this dataset are fully de-identified,

so that the image data cannot be linked back to the healthy

donors of the scanned blood smears. Furthermore, it is not

disclosed which cell image was taken from which blood

smear, so that no frequencies of individual cell types can

be determined. Additionally, we only consider cell types

present in normal blood, so that no specific hematologic

pathology can be deduced from cell morphologies.

Does the dataset contain data that, if viewed directly,

might be offensive, insulting, threatening, or might oth-

erwise cause anxiety?

No. The dataset does not contain data with any of the above

properties.

Does the dataset relate to people?

Yes. The dataset consist of images of human WBCs.

Does the dataset identify any subpopulations (e.g., by

age, gender)?

The donors of the blood smears used in this dataset are fully

deidentified, and no information on subpipulation composi-

tion is provided.

Is it possible to identify individuals (i.e., one or more

natural persons), either directly or indirectly (i.e., in

combination with other data) from the dataset?

No. It is not possible to identify individuals from an image

of their white blood cells or visa versa.

Does the dataset contain data that might be considered

sensitive in any way (e.g., data that reveals racial or eth-

nic origins, sexual orientations, religious beliefs, political

opinions or union memberships, or locations; financial

or health data; biometric or genetic data; forms of gov-

ernment identification, such as social security numbers;

criminal history)?

No. While the distribution of cell types for a specific pa-

tient could reveal information about that patient’s health

status, isolated single-cell images of normal leukocytes do

not allow for this inference.

Any other comments?

See table 13 for a summary of the composition of Raw-

Microscopy.

Class Proportion in %

Basophil (BAS) 1.91

Eosinophil (EOS) 5.74

Smudge cell / debris (KSC) 17.34

atypical Lymphocyte (LYA) 3.19

typical Lymphocyte (LYT) 24.47

Monocyte (MON) 20.32

Neutrophil (band) (NGB) 0.85

Neutrophil (segmented) (NGS) 22.98

Image that could not be assigned a class (UNC) 3.19

Table 12: The proportion of the classes in Raw-Microscopy.

Collection Process

How was the data associated with each instance ac-

quired?

Images of the dataset have been acquired directly from a

CMOS imaging sensor. They are in a raw unprocessed

format.

What mechanisms or procedures were used to collect

the data (e.g., hardware apparatus or sensor, manual

human curation, software program, software API)?

Imaging data have been obtained via a custom brightfield

microscope.

If the dataset is a sample from a larger set, what was the

sampling strategy (e.g., deterministic, probabilistic with

specific sampling probabilities)?

Images have 256 × 256 pixel size and have been cropped

from larger images. The dataset corresponds to a selection

of white blood cells in the acquired large images. A sam-

pling strategy aimed at increasing the proportion of rare

classes of white blood cells has been used.

Who was involved in the data collection process (e.g.,

students, crowdworkers, contractors) and how were

they compensated (e.g., how much were crowdworkers

paid)?



A research assistant has been involved in the data collection

process and has been compensated with a monthly salary.

Over what timeframe was the data collected? Does this

timeframe match the creation timeframe of the data as-

sociated with the instances (e.g., recent crawl of old news

articles)?

Data have been collected on a timeframe of two months,

corresponding to the availability of the physical samples to

image. Data have been collected on purpose for this work.

Were any ethical review processes conducted (e.g., by an

institutional review board)?

The microscopy data was purchased from a commercial lab

vendor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany)

who attained consent from the subjects included.

Does the dataset relate to people?

Yes. The dataset consists of microscopic images of human

white blood cells.

Did you collect the data from the individuals in question

directly, or obtain it via third parties or other sources

(e.g., websites)?

Data have not been obtained via third parties.

Were the individuals in question notified about the data

collection?

As the blood smear slides were bought from a company,

notification to individuals of the data collection has been

performed by the company.

Did the individuals in question consent to the collection

and use of their data?

Yes, they did.

If consent was obtained, were the consenting individuals

provided with a mechanism to revoke their consent in

the future or for certain uses?

We do not know the conditions of consent adopted by the

selling company. However, we believe the company pro-

vided the individuals a complete freedom in revoking their

consent in the future, if desired.

Has an analysis of the potential impact of the dataset and

its use on data subjects (e.g., a data protection impact

analysis) been conducted?

No, this kind of analysis has not been conducted.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data

done (e.g., discretization or bucketing, tokenization, part-

of-speech tagging, SIFT feature extraction, removal of

instances, processing of missing values)?

Intensity scaled images are generated with Jetraw Data Suite

for both datasets, which applies a physical model based on

sensor calibration to accurately simulate intensity reduc-

tion. Microscopy Raw images are extracted from RGB Mi-

croscopy data through a pixel selection from images taken

with three filters, in order to have a Bayer Pattern. Pixels

intensities are rescaled with Jetraw Data Suite to match the

measured transmissivities of a Bayer colour filters array.

Was the “raw” data saved in addition to the prepro-

cessed/cleaned/labeled data (e.g., to support unantici-

pated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label the in-

stances available?

All code used in the experiments of this manuscript is pub-

licly available. Jetraw products that were used for acquiring

the data are commercially available.

Uses

Has the dataset been used for any tasks already?

The dataset has not yet been used.

Is there a repository that links to any or all papers or

systems that use the dataset?

The repository at https://github.com/

aiaudit-org/raw2logit associated to this work,

maintained by Luis Oala.

What (other) tasks could the dataset be used for?

The dataset can be used to study the effect of image signal

processing on the performance and robustness of any other

machine learing model implemented in PyTorch, designed

for a supervised multiclass classification task.

Is there anything about the composition of the dataset

or the way it was collected and preprocessed/cleaned/la-

beled that might impact future uses?

To the best of our knowledge, we do not recognize such

impacts.

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit


Are there tasks for which the dataset should not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties outside

of the entity (e.g., company, institution, organization) on

behalf of which the dataset was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball on

website, API, GitHub)

A guide to access the dataset is available at https:

//github.com/aiaudit-org/raw2logit. More-

over, the dataset can be downloaded anonymously and di-

rectly at https://zenodo.org/record/5235536

under the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright or

other intellectual property (IP) license, and/or under

applicable terms of use (ToU)?

The dataset will be distributed under the Creative Commons

Attribution 4.0 International.

Have any third parties imposed IP-based or other re-

strictions on the data associated with the instances?

No.

Do any export controls or other regulatory restrictions

apply to the dataset or to individual instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the

dataset?

Luis Oala on behalf of Dotphoton AG.

How can the owner/curator/manager of the dataset be

contacted (e.g., email address)?

By email address via

luis.oala@dotphoton.com.

Is there an erratum?

At the time of submission, there is no such erratum. If an er-

ratum is needed in the future it will be accessible at https:

//github.com/aiaudit-org/raw2logit.

Will the dataset be updated (e.g., to correct labeling er-

rors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of in-

stances.

If the dataset relates to people, are there applicable limits

on the retention of the data associated with the instances

(e.g., were individuals in question told that their data

would be retained for a fixed period of time and then

deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be support-

ed/hosted/maintained?

Older versions will be supported and maintained in the fu-

ture. The dataset will continue to be hosted as long as

https://zenodo.org/ exists.

If others want to extend/augment/build on/contribute to

the dataset, is there a mechanism for them to do so?

For any of these requests contact either Luis

Oala (luis.oala@dotphoton) or Bruno Sanguinetti

(bruno.sanguinetti@dotphoton.com). For now, we do not

have an established mechanism to handle these requests.

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://zenodo.org/record/5235536
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://zenodo.org/


Composition of Raw-Microscopy

Type of instances Image and label

Objects on images White blood cells

Type of classes Morphological classes

Number of instances 940

Number of classes 9

Image size 256 by 256 pixels

Image format .tif

Raw image format Please see Section 1.1

Table 13: A summary of the composition of Raw-

Microscopy.



Datasheet for Raw-Drone

Motivation

For what purpose was the dataset created?

With Raw-Drone we provide a publicly available raw dataset

in order to examine the effect of the image data processing

on the performance and the robustness of machine learning

models. This dataset enables to study these effects for a seg-

mentation task: the segmentation of cars. The dataset was

taken with specified parameters: sensor gain, point-spread

function and ground-sampling distance, so that physical

models may be used to process the data. It also was taken

with a easily accessible and affordable system, so that it

may be reproduced.

Who created this dataset (e.g., which team, research

group) and on behalf of which entity (e.g., company,

institution, organization)?

The dataset was created by Bruno Sanguinetti and Marco

Aversa on behalf of the company Dotphoton AG.

Who funded the creation of the dataset?

The data collection was funded by Dotphoton AG. The cali-

bration of the image characteristics was jointly funded by

Dotphoton AG and the European Space Agency.

Composition

What do the instances that comprise the dataset repre-

sent (e.g., documents, photos, people, countries)?

An instance is a tuple of an image and a segmentation mask.

The image shows a landscape shot from above. The segmen-

tation mask is a binary image. A white pixel in this mask

corresponds to a pixel within a region in the image where a

car is displayed. A black pixel in this mask corresponds to a

pixel within a region in the image where no car is displayed.

How many instances are there in total (of each type, if

appropriate)?

The dataset consists of 548 instances.

Does the dataset contain all possible instances or is it

a sample (not necessarily random) of instances from a

larger set?

The dataset does not contain all possible instances. Only

images with at least one white pixel in the associated seg-

mentation mask are considered.

What data does each instance consist of? “Raw” data

(e.g., unprocessed text or images) or features?

Both, the image and the segmentation mask consist of 256

by 256 pixels. The image is a raw image in .tif format

and the the segmentation mask is in .png format. The

images are cropped sub-images of 12 raw images in .DNG

format, consisting of 3648 by 5472 pixels.

Is there a label or target associated with each instance?

Each instance is associated to a binary segmentation mask.

Is any information missing from individual instances?

No information is missing.

Are relationships between individual instances made ex-

plicit (e.g., users’ movie ratings, social network links)?

Since every image is a cropped sub-image of an original im-

age, several of these sub-images belong to the same original

image. All sub-images are disjoint, i.e. no different images

share a pixel from the original image.

Are there recommended data splits (e.g., training, devel-

opment/validation, testing)?

There are no recommended data splits. All the data splits

that we used for our experiments were randomly picked.

Are there any errors, sources of noise, or redundancies

in the dataset?

To the best of our knowledge, there are no errors in the

dataset. The segmentation mask is created by hand and

hence noisy, especially at the boundaries between a region

with a car and a region without a car.

Is the dataset self-contained, or does it link to or oth-

erwise rely on external resources (e.g., websites, tweets,

other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered

confidential (e.g., data that is protected by legal privilege

or by doctor-patient confidentiality, data that includes

the content of individuals non-public communications)?

No. The dataset does not contain data of any of the above

types.



Does the data set contain data that, if viewed directly,

might be offensive, insulting, threatening, or might oth-

erwise cause anxiety?

No. The dataset does not contain data with any of the above

properties.

Does the dataset relate to people?

The dataset does not relate to people. The drone data was

screened for PIIs such as faces or license plates on cars and

removed by the data collection team.

Any other comments?

See table 14 for a summary of the composition of the Raw-

Drone.

Collection Process

How was the data associated with each instance ac-

quired?

The data was collected by flying a drone and saving the raw

data. The calibration data for the drone’s imager was ac-

quired both under laboratory conditions and using a ground-

based calibration target, so that it could be acquired under

operating conditions.

What mechanisms or procedures were used to collect

the data (e.g., hardware apparatus or sensor, manual

human curation, software program, software API)?

To acquire the drone images, we used a DJI Mavic 2 Pro

Drone, equipped with a Hasselblad L1D-20c camera (Sony

IMX183 sensor). This system has 2.4 µm pixels in Bayer

filter array. Images were taken with the drone hovering

for maximum stability. This stability was verified to be

better than a single pixel by calculating the correlation of

subsequent images. The objective has a focal length of

10.3mm. We operated this objective at an f-number of

N = 8, to emulate the PSF circle diameter relative to the

pixel pitch and ground sampling distance (GSD) as would

be found on images from high-resolution satellites. Oper-

ating at N = 8 also minimises vignetting, aberrations, and

increases depth of focus. The point-spread function (PSF)

was measured to have a circle diameter of 12.5 µm using the

edge-spread function technique and a ground calibration tar-

get.This corresponds to σ = 2.52px, which also corresponds

to a diffraction-limited system, within the uncertainty dic-

tated by the wavelength spread of the image. Images were

taken at 200 ISO, corresponding to a gain of 0.528DN/e−.

The 12-bit pixel values are however left-justified to 16-bits,

so that the gain on the 16-bit numbers is 8.448DN/e−. The

images were taken at a height of 250m, so that the GSD is

6 cm. All images were tiled in 256x256 patches. Segmen-

tation color masks were created to identify cars for each

patch. From this mask, classification labels were generated

to detect if there is a car in the image. The dataset is consti-

tuted by 548 images for the segmentation task, and 930 for

classification. Six additional intensity scales were created

with Jetraw.

If the dataset is a sample from a larger set, what was the

sampling strategy (e.g., deterministic, probabilistic with

specific sampling probabilities)?

The entire dataset is presented.

Who was involved in the data collection process (e.g.,

students, crowdworkers, contractors) and how were

they compensated (e.g., how much were crowdworkers

paid)?

The dataset was taken by a company employee, compen-

sated by his salary. Labeling was performed by both a com-

pany employee and a PhD student, who’s PhD is funded by

the company.

Over what timeframe was the data collected? Does this

timeframe match the creation timeframe of the data as-

sociated with the instances (e.g., recent crawl of old news

articles)?

The dataset was taken as the initial step of writing this

article.

Were any ethical review processes conducted (e.g., by an

institutional review board)?

The dataset does not contain any elements requiring an

ethical review process.

Does the dataset relate to people?

The dataset does not relate to people. There are individ-

uals on the images, but it is not possible to identify these

individuals.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data

done (e.g., discretization or bucketing, tokenization, part-

of-speech tagging, SIFT feature extraction, removal of

instances, processing of missing values)?

No further processing was applied to the Raw-Drone data.

Was the “raw” data saved in addition to the prepro-

cessed/cleaned/labeled data (e.g., to support unantici-

pated future uses)?



Raw images are available in the dataset.

Is the software used to preprocess/clean/label the in-

stances available?

All code used in the experiments of this manuscript

is publicly available. Jetraw products that were used

for acquiring the data are commercially available.

Uses

Has the dataset been used for any tasks already? The

dataset has not yet been used.

Is there a repository that links to any or all papers or

systems that use the dataset?

The repository at https://github.com/

aiaudit-org/raw2logit associated to this work,

maintained by Luis Oala.

What (other) tasks could the dataset be used for?

The dataset can be used to study the effect of image signal

processing on the performance and robustness of any other

machine learing model implemented in PyTorch, designed

segmentation task.

Is there anything about the composition of the dataset

or the way it was collected and preprocessed/cleaned/la-

beled that might impact future uses?

To the best of our knowledge, we do not recognize such

impacts.

Are there tasks for which the dataset should not be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties outside

of the entity (e.g., company, institution, organization) on

behalf of which the dataset was created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball on

website, API, GitHub)

A guide to access the dataset is available at https:

//github.com/aiaudit-org/raw2logit. More-

over, the dataset can be downloaded anonymously and di-

rectly at https://zenodo.org/record/5235536

under the doi: 10.5281/zenodo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright or

other intellectual property (IP) license, and/or under

applicable terms of use (ToU)?

The dataset will be distributed under the Creative Commons

Attribution 4.0 International.

Have any third parties imposed IP-based or other re-

strictions on the data associated with the instances?

No.

Do any export controls or other regulatory restrictions

apply to the dataset or to individual instances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the

dataset?

Luis Oala on behalf of Dotphoton AG.

How can the owner/curator/manager of the dataset be

contacted (e.g., email address)?

By email address via

luis.oala@dotphoton.com.

Is there an erratum?

At the time of submisson, there is no such erratum. If an er-

ratum is needed in the future it will be accessible at https:

//github.com/aiaudit-org/raw2logit.

Will the dataset be updated (e.g., to correct labeling er-

rors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of in-

stances.

If the dataset relates to people, are there applicable limits

on the retention of the data associated with the instances

(e.g., were individuals in question told that their data

would be retained for a fixed period of time and then

deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be support-

ed/hosted/maintained?

https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit
https://zenodo.org/record/5235536
https://github.com/aiaudit-org/raw2logit
https://github.com/aiaudit-org/raw2logit


Older versions will be supported and maintained in the fu-

ture. The dataset will continue to be hosted as long as

https://zenodo.org/ exists.

If others want to extend/augment/build on/contribute to

the dataset, is there a mechanism for them to do so?

For any of these requests contact either Luis Oala

(luis.oala@dotphoton.com) or Bruno Sanguinetti

(bruno.sanguinetti@dotphoton.com). For now, we do not

have an established mechanism to handle these requests.

Composition of Raw-Drone

Type of instances Image and mask

Objects on images Landscape shots from above

Number of instances 548

Number of original images 12

Image size 256 by 256 pixels

Mask size 256 by 256 pixels

Original image size 3648 by 5472

Image format .tif

Mask format .png

Raw image format .DNG

Table 14: A summary of the composition of Raw-Drone.

https://zenodo.org/

