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Abstract

Automatic differentiation, also known as back-

propagation, AD, autodiff, or algorithmic differ-

entiation, is a popular technique for computing

derivatives of computer programs. While AD has

been successfully used in countless engineering,

science and machine learning applications, it can

sometimes nevertheless produce surprising results.

In this paper we categorize problematic usages

of AD and illustrate each category with exam-

ples such as chaos, time-averages, discretizations,

fixed-point loops, lookup tables, linear solvers,

and probabilistic programs, in the hope that read-

ers may more easily avoid or detect such pitfalls.

1. Introduction

Automatic differentiation (AD) is steadily becoming more

popular in machine learning, scientific computing, engineer-

ing, and many other fields as a tool to compute derivatives

efficiently and accurately. While the benefits are widely

popularized, users are not always aware that AD can pro-

duce surprising results when applied to certain functions.

Some of the most problematic failure modes are inherent

to common AD approaches and systematically lead to con-

fusing (or, by some measure, incorrect) derivatives across

multiple tools or input languages. This makes debugging

difficult without an in-depth understanding.

This article presents a new way to categorize AD problems

from previous work (Fischer, 1991; Beck & Fischer, 1994;

Griewank & Walther, 2008; Christianson, 1994; Bangaru

et al., 2021), with the goal of enabling readers of this article

to avoid known pitfalls, and be less surprised when they

discover new ones in the future.
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To define the desired outcome of AD, let us consider a math-

ematical function y ← f(x), where x, y are real or complex

scalar values or vectors of arbitrary size. One might wish to

compute∇(f), the derivative of y with respect to x, which—

depending on the shape and size of x and y—could be a

scalar, column or row vector, or, more generally, a Jacobian

matrix. Instead of computing an entire Jacobian matrix, one

might wish to compute projections of that matrix (popularly

implemented as the forward mode of automatic differen-

tiation) or of its transpose (implemented as reverse mode

or backpropagation). AD can also compute higher-order

derivatives or their projections. The pitfalls described in

this work apply to all of these AD usages; we refer to prior

work that discusses AD modes and their relationship (Gier-

ing & Kaminski, 1998; Bartholomew-Biggs et al., 2000;

Griewank, 2003; Griewank & Walther, 2008; Naumann,

2012; Hoffmann, 2016; Baydin et al., 2017; Margossian,

2019; Gebremedhin & Walther, 2020; Radul et al., 2023).

Instead of the true mathematical function f , a computer

program implements an approximation Y ← F (X), where

F , X , and Y differ from the true f , x, and y for reasons that

include floating-point errors and often many other approxi-

mations. Since AD operates on the computer program, we

can at best hope to obtain derivatives of F . Moreover, AD

is applied at some level of abstraction, which influences the

exact function F that we consider the program to implement.

We can thus define the expected output of AD as follows:

AD operates on a chosen abstraction level and assuming

that operations and their derivatives can be computed

to sufficient accuracy. Under these assumptions, AD

computes the derivative of a function F given as the

composition of operations encountered during the eval-

uation of a particular branch of a program above the

given abstraction level.

This definition allows us to categorize pitfalls in Section 2.

Before doing so, we note that AD approaches have various

trade-offs regarding performance, user convenience, and

tool development effort (Hascoët & Utke, 2016; Margossian,

2019). On these grounds, some authors argue in favor of

AD on high abstraction levels (Farrell et al., 2013) while

others argue for the opposite (Moses & Churavy, 2020). As

important as these aspects are, we focus on the semantics of

AD and also ignore problems caused by tool bugs.
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Figure 1. A function with unintuitive derivatives. Top: The time

average converges to zero, regardless of the frequency. One might

thus expect the derivative with respect to the frequency parameter

to converge to zero. Middle: The derivative, however, continues

to oscillate between −1 and 1. Bottom: Finite differences (FD)

behave more intuitively and converge to zero.

2. Categories of AD pitfalls

In this section we illustrate each pitfall category with exam-

ples and refer to related work for more details.

2.1. Pitfall I: Unexpected function derivatives

The derivatives of the true function f do not always exist or

are not always useful. For example, a program may model

discontinuous physical processes such as phase changes

from liquid to solid, or shocks in fluid dynamics. Sometimes

the discontinuities are introduced when modeling smooth

processes, for example when quantities are filtered to avoid

nonphysical behavior or numerical instabilities (Sweby,

1984). Discretized models are often designed as good ap-

proximations of a continuous system, but their derivatives

might be vastly different (Hager, 2000; Collis et al.). In

some cases the derivatives of the discretized system are use-

ful, and in others a discretization of a differentiated system

is preferable (Nadarajah & Jameson, 2000). The compu-

tational fluid dynamics community–being an early user of

AD and adjoint methods–has studied this in detail (Appel

& Gunzburger, 1997; Fikl et al., 2016; Giles & Ulbrich,

2010; Bardos & Pironneau, 2002), but practitioners in other

domains may find similar problems when they adopt AD.

Differentiable functions with well-understood large-scale

behavior may have localized behavior that causes unintu-

itive, noisy, or misleading derivatives. Previous work has

found that finite differences can in such cases be more reli-

able (Moré & Wild, 2014; Dussault & Hamelin, 2006). One

example is the computation of time averages or other statis-

tical properties of dynamic or chaotic processes, which can

have exponentially diverging derivatives (Wang, 2013) for

finite-size time windows. From a user’s perspective, it can

be difficult to determine whether a program (or a small part

of it) implements a chaotic function, which may appear as an

unremarkable composition of differentiable operations. Con-

sequently, a user may become aware of small-scale chaotic

effects only when applying AD. Previous work proposed

methods to obtain meaningful derivatives in the presence

of chaos (Wang, 2013; Wang et al., 2014; Blonigan, 2017),

which go beyond the standard definition of AD and need to

be used judiciously because of their high cost.

A poorly chosen objective function can itself cause mis-

leading derivatives. Consider a system whose behavior in

time is modeled as a cosine function with frequency ω. Its

time-averaged state can be approximated by integrating over

a sufficiently long time window [0, T ]. While the integral

converges with growing T regardless of ω (which intuitively

indicates a 0-derivative with respect to ω), the derivative

never converges and oscillates between −1 and 1 as shown

in Figure 1. Confusingly, finite differences for any fixed

h converge to the intuitive, but incorrect, value of 0. The

example may appear contrived but represents a challenge

in real applications, such as oscillations that cause mislead-

ing derivatives for time-averaged quantities in aerospace

engineering (Krakos et al., 2012).

Undesirable derivatives are not limited to simulations of

physical systems. For example, machine learning models

may have “exploding” or “vanishing” gradients that grow

or shrink exponentially with the number of layers (Pascanu

et al., 2012; Hochreiter, 1998). In summary, we observe that

useful functions, even differentiable ones, do not always

have useful derivatives. The successful use of AD can re-

quire a deep understanding of the problem, and objective

functions designed with differentiation in mind.

2.2. Pitfall II: Unexpected abstraction derivatives

Programs are often written in a relatively high-level ab-

straction and successively transformed, or lowered, into

machine code through the use of general-purpose or domain-

specific compilers, runtime calls to libraries, or a mix of

multiple approaches. This is true for programs written in

high-level frameworks such as Jax (Bradbury et al., 2018)

or PyTorch (Paszke et al., 2017), or relatively low-level lan-

guages such as C or Fortran. Transformations are designed

to be sufficiently accurate—sometimes even exact—but may

nevertheless change the derivatives. AD therefore does not

necessarily differentiate “what you implement” but, rather,

what is implemented at the level of abstraction at which

AD is applied. It is generally the user’s responsibility to

ensure that the chosen abstraction’s derivatives are reason-

able approximations to those of the true function. There

are almost always levels of abstraction that are too low to
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permit this, such as the low-level view in which numbers

are represented as bit patterns. Viewed at this level, pro-

grams have discrete inputs and outputs and are therefore

non-differentiable. Because such a view is clearly unhelp-

ful for computing derivatives, AD usually operates at a

higher level of abstraction, where operations are assumed

to represent functions with real (or complex) inputs and

outputs (Bolte & Pauwels, 2020).

The most suitable abstraction for applying AD is not always

explicit in the source code. For example, multiple linear

algebra operations can be implemented as a sequence of

loop nests within the same routine. In this case, the lin-

ear algebra view that would often be most appropriate for

AD (Giles, 2008) exists only on paper. Another example

is the approximate computation of an expectation by sam-

pling a discrete random process. While the expected value

may smoothly depend on model parameters, the sampling

process will hide this dependency from classic AD tools

such as Jax (Bradbury et al., 2018), which motivates the de-

velopment of probabilistic programming approaches (Arya

et al., 2023) that allow expressing such problems on a more

suitable level of abstraction. Users may need to modify

their implementation or even completely re-implement their

problem in a different language (Bangaru et al., 2021) to

expose the appropriate abstraction to an AD tool.

Explicit functions are sometimes replaced with approxi-

mations whose derivatives differ from those of the approx-

imated function. As an example, consider table lookups

that are used in practice both to approximate small math

operations (Alexe et al., Dec 2009) or entire physical mod-

els or to incorporate empirical observations (Ahmed et al.,

2009), but result in a piecewise constant function with zero

derivatives everywhere. Similar issues occur for other ap-

proximation techniques including bit hacks (Ercegovac et al.,

2000; Volder, 1959), numerical quadrature (Bangaru et al.,

2021), and probabilistic methods (Arya et al., 2023). Some

programs approximate the same function by using different

algorithms depending on the input value (Gal, 1991), and

differentiating through such an implementation yields useful

derivatives for some but not all inputs.

Implicit functions include the solution of systems of linear

or nonlinear equations using direct or iterative processes.

Instead of differentiating through a linear solver implemen-

tation, it is usually preferable to formulate the derivative

on a higher abstraction level in terms of a modified linear

equation system (Griewank et al., 1993; Giering & Kamin-

ski, 1998; Bartholomew-Biggs et al., 2000; Moré & Wild,

2014). Similarly, programs containing iterative fixed-point

loops often require AD at a high abstraction level because

the process may terminate after a few steps (Gilbert, 1992;

Beck, 1994; Christianson, 1994; 1998), especially when

given a good initial guess, while the derivatives may not
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Figure 2. Square root finding with Heron’s method for a set error

tolerance of 10
−6. When differentiating through the iterative

method, the stopping criterion of the primal is still used and stops

the process before the derivatives reach the desired accuracy.

Without branch With branch

Function:
def f(x):

return x

def g(x):
if x == 0:

return 0
else:

return x

Derivative:
def f_d(x, xd):

return xd

def g_d(x, xd):
if x == 0:

return 0 # wrong!
else:

return xd

Figure 3. The functions f and g return the exact same value for

all inputs and implement the same mathematical function without

any approximations. However, their derivative functions ḟ and

ġ compute different values at x = 0 because the encountered

operators inside the branch do not depend on x.

have converged yet. Figure 2 shows such an example. Even

when addressed by AD tools, solutions to this pitfall require

user awareness (Taftaf et al., 2015). Similar problems exist

in deep learning (Liao et al., 2018; Bai et al., 2019; Lorraine

et al., 2020), and also require special derivative rules that

effectively raise the level of abstraction.

2.3. Pitfall III: Unexpected branch derivatives

Chain rule differentiation of the operations encountered in-

side a branch may yield different derivatives from those en-

countered on other branches of the function, which is prob-

lematic if program branches apply on closed subdomains—

particularly for individual points (Griewank & Walther,

2008; Beck & Fischer, 1994). For example, BLAS func-

tions (Blackford et al., 2002) often use a fast branch if one

of the factors in a multiplication is 0 or 1, resulting in zero

derivatives with respect to that factor. An example is shown

in Figure 3. A similar problem occurs for max (or min)

functions with inputs that contain more than one identical

maximum (or minimum) value, where the choice does not

affect the function result but may affect the derivative.
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Figure 4. Example of a function whose derivative is orders of mag-

nitude less accurate when evaluated with double precision floating-

point numbers, particularly for input values close to 0.

2.4. Pitfall IV: Inaccurate Operators

Sometimes, calculating the derivative of a function can incur

more severe floating-point rounding errors than can calcu-

lating the function itself. Figure 4 shows such an example,

where the derivative calculation involves subtracting two

nearly equal values and subsequently dividing by the result-

ing small number, causing large relative errors.

Roundoff is not the only concern for this pitfall. When-

ever AD is applied at a high level of abstraction, differen-

tiation occurs with the assumption that the operators ex-

actly compute the differentiable function and its derivative.

This assumption is violated, for example, when iterative

linear solvers are used that converge to a reasonably accu-

rate value for the original function but break down, diverge,

or converge more slowly for the derivative function. Com-

monly used iterative methods such as BiCG, BiCGSTAB,

or restarted GMRES do not have known performance guar-

antees (Barrett et al., 1994).

3. Debugging Techniques

AD can be implemented in different modes that compute

projections of Jacobian matrices or of their transpose, or

higher-order derivative matrices. Finite differences (FD)

can be used to obtain approximations for Jacobian projec-

tions, which can be compared with AD and allows detection

of tool bugs as well as many instances of pitfalls I, II and

III. However, this requires choosing a good step size and

sometimes leaves users guessing whether a discrepancy is

caused by floating-point or truncation errors or by AD prob-

lems (Wolfe, 1982). Higher order formulae and multiple

step sizes can be used for a more thorough test that deter-

mines the convergence order of the error.

If a tool supports more than one AD mode or if multiple

tools are available that support different modes, users can

use simple algebraic identities to compute the same quantity

in multiple ways and compare the results. While this is a

useful debugging tool, pitfalls I, II and III would cause all

AD modes to consistently produce the same wrong deriva-

tives. To circumvent this problem, users can mix finite

differences with other AD modes, as is done for example in

the gradient testing routine in PyTorch (Paszke et al., 2017)

with randomized values for x, ẋ and ȳ, allowing direct de-

bugging of reverse mode AD – with the aforementioned

caveats regarding step size and error tolerance.

4. Conclusion

We show in this paper that AD may produce wrong or sur-

prising results. We believe that this need not be a reason

to avoid AD. Many other methods—floating-point arith-

metic, optimization algorithms, machine learning, to name

a few—are useful despite occasional surprises.

Further research could aim to create languages and tools

that implement AD in a more predictable way. Recent work

discusses AD semantics and provably correct AD but fo-

cuses on functional or domain-specific languages that are

more restrictive than the languages used in most applica-

tions (Huot et al., 2020; Krawiec et al., 2022; Wang et al.,

2019). There has also been recent progress in understand-

ing the semantics of AD for neural networks containing

nonsmooth activation functions or that use finite precision

arithmetic (Lee et al., 2020; 2023), or for probabilistic pro-

grams (Lew et al., 2023).

Programmers are often aware that they are responsible for

the semantics of their program and that the language only

guarantees semantics of individual constructs. We argue that

a similar view of AD should be encouraged rather than mak-

ing sweeping claims about AD “differentiating programs.”

The quote from (Naumann, 2012) remains true a decade

later: The application of AD to computer programs still

deserves to be called an “art.”
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