
Lossless hardening with ∂B nets

Ian Wright 1

Abstract

∂B nets are differentiable neural networks that

learn discrete boolean-valued functions by gra-

dient descent. ∂B nets have two semantically

equivalent aspects: a differentiable soft-net, with

real weights, and a non-differentiable hard-net,

with boolean weights. We train the soft-net by

backpropagation and then ‘harden’ the learned

weights to yield boolean weights that bind with

the hard-net. The result is a learned discrete func-

tion. Unlike existing approaches to neural net-

work binarization the ‘hardening’ operation in-

volves no loss of accuracy. Preliminary experi-

ments demonstrate that ∂B nets achieve compa-

rable performance on standard machine learning

problems yet are compact (due to 1-bit weights)

and interpretable (due to the logical nature of the

learnt functions).

1. Introduction

Neural networks must be differentiable. But differentiability

means we cannot directly learn discrete functions, such as

logical predicates. We can approximate discrete functions

by defining continuous relaxations. This paper explores a

different approach: we define differentiable functions that

‘harden’, without approximation, to discrete functions.

Specifically, ∂B nets have two aspects: a soft-net, which is

a differentiable function with real weights, and a hard-net,

which is a discrete function with boolean weights. Both

aspects are semantically equivalent. We train the soft-net as

normal, using backpropagation, then ‘harden’ the learned

weights to boolean values, which bind with the hard-net

to yield a discrete function with identical predictive perfor-

mance (see Figure 1).

1GitHub, Oxford, UK. Correspondence to: Ian Wright
<wrighti@acm.org>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

Figure 1. Learning discrete functions with a ∂B net.

2. ∂B nets

Definition 2.1 (Soft-bits and hard-bits). A soft-bit is a real

value in the range [0, 1] and a hard-bit is a boolean value

from the set {0, 1}. A soft-bit, x, is high if x > 1/2, other-

wise it is low.

A hardening function converts soft-bits to hard-bits.

Definition 2.2 (Hardening). The hardening function,

harden(x1, . . . , xn) = [f(x1), . . . , f(xn)], converts soft-

bits to hard-bits, where f(x) = 1 if x > 1/2 and f(x) = 0
otherwise.

Soft-nets use soft-bits and hard-nets use hard-bits. A soft-net

learns 1-bit weights by representing them, at training time,

as real numbers. The equivalent hard-net, at inference time,

simply uses 1-bit weights. A soft-net is any differentiable, or

differentiable a.e., function, f , that ‘hardens’ to a hard-net

that is a semantically equivalent discrete function, g.

Definition 2.3 (Hard-equivalence). A function, f :
[0, 1]n → [0, 1]m, is hard-equivalent to a discrete function,

g : {1, 0}n → {1, 0}m, if harden(f(x)) = g(harden(x))
for all x ∈ {(x1, . . . , xn) | xi ∈ [0, 1] \ {1/2}}. For short-

hand write f ▶ g.

∂B nets are composed from ‘activation’ functions that are

hard-equivalent to boolean functions (and natural generali-

sations).

1

2.1. Learning to negate

Say we aim to learn to negate a boolean value, x, or leave it

unaltered. Represent this decision by a boolean weight, w,

where low w means negate and high w means do not. The

boolean function that meets this requirement is ¬(x⊕ w).
However, this function is not differentiable. Define the

differentiable function, ∂¬(w, x) = 1 − w + x(2w − 1),
where ∂¬(w, x) ▶ ¬(x⊕ w) (see proposition F.1).

Many kinds of differentiable fuzzy logic operators exist

(see van Krieken et al. (2022) for a review). So why this

functional form? Product logics, where f(x, y) = xy is as

a soft version of x ∧ y, although hard-equivalent at extreme

values, e.g. f(1, 1) = 1 and f(0, 1) = 0, are not hard-

equivalent at intermediate values, e.g. f(0.6, 0.6) = 0.36,

which hardens to False not True. Gödel-style min and max
functions, although hard-equivalent over the entire soft-bit

range, i.e. min(x, y) ▶ x ∧ y and max(x, y) ▶ x ∨ y, are

gradient-sparse in the sense that their outputs do not always

vary when any input changes, e.g. ∂
∂x max(x, y) = 0 when

(x, y) = (0.1, 0.9). So although the composite function

max(min(w, x),min(1 − w, 1 − x)) is differentiable and

▶ ¬(x ⊕ w) it does not always backpropagate error to its

inputs. In contrast, ∂¬ always backpropagates error to its

inputs because it is a gradient-rich function (see Figure 3).

Definition 2.4 (Gradient-rich). A function, f : [0, 1]n →

[0, 1]m, is gradient-rich if
∂f(x)
∂xi

̸= 0 for all x ∈
{(x1, . . . , xn) | xi ∈ [0, 1] \ {1/2}}.

∂B nets are composed of hard-equivalent ‘activation’ func-

tions that are, where possible, gradient-rich. To meet this

requirement we introduce the technique of margin packing.

2.2. Margin packing

Say we aim to construct a differentiable analogue of x ∧ y.

Note that min(x, y) essentially selects one of x or y as a

representative soft-bit that is guaranteed hard-equivalent to

x∧ y. However, by selecting only one of x or y then min is

also guaranteed to be gradient-sparse. We define a ‘margin

packing’ method to solve this dilemma.

The main idea of margin packing is (i) select a representa-

tive bit that is hard-equivalent to the target discrete function,

and then (ii) pack a fraction of the margin between the

representative bit and the hard threshold 1/2 with gradient-

rich information. The result is an augmented bit that is a

function of all inputs yet hard-equivalent to the target func-

tion. More concretely, say a vector of soft-bit inputs x has

an ith element that represents the target discrete function

(e.g. if our target is x ∧ y then x = [x, y] and i is 1 if

x < y and i = 2 otherwise). Now, if we pack only a frac-

tion of the available margin, |xi − 1/2|, we will not cross

the 1/2 threshold and break the hard-equivalence of the

representative bit. The average soft-bit value, x̄ ∈ [0, 1],

Figure 2. Margin packing for constructing gradient-rich, hard-

equivalent functions. A representative bit, z, is hard-equivalent to a

discrete target function but gradient-sparse (e.g. z = min(x, y) ▶

x ∧ y). On the left z is low, z < 1/2; on the right z is high,

z > 1/2. We can pack a fraction of the margin between z and

the hard threshold 1/2 with additional gradient-rich information

without affecting hard-equivalence. A natural choice is the mean

soft-bit, x̄ ∈ [0, 1]. The grey shaded areas denote the packed

margins and the final augmented bit. On the left ≈ 60% of the

margin is packed; on the right ≈ 90%.

is just such a gradient-rich fraction. We therefore define

margin-fraction(x, i) = x̄× |xi − 1/2|. The packed frac-

tion, x̄, of the margin increases or decreases with the average

soft-bit value. The available margin, |xi − 1/2|, tends to

zero as the representative bit, xi, tends to the hard threshold

1/2. At the threshold point there is no margin to pack. Now,

define the augmented bit as

augmented-bit(x, i) =
{

1/2 + margin-fraction(x, i) if xi > 1/2

xi +margin-fraction(x, i) otherwise,

(1)

which is differentiable a.e. Note that if the representative bit

is high (resp. low) then the augmented bit is also high (resp.

low). The difference between the augmented and represen-

tative bit depends on the size of the available margin and the

mean soft-bit value. Almost everywhere, an increase (resp.

decrease) of the mean soft-bit increases (resp. decreases)

the value of the augmented bit (see Figure 2). Note that

if the ith bit is representative (i.e. hard-equivalent to the

target function) then so is the augmented bit (see lemma

F.2). We use margin packing, where appropriate, to define

gradient-rich, hard-equivalents of boolean functions.

2.3. Differentiable ∧, ∨ and ⇒

We aim to construct a differentiable analogue of the boolean

function
∧n

i=1 xi. A representative bit is min(x1, . . . , xn).
The function ∂∧(x) = augmented-bit(x, argmini x[i]) is

therefore hard-equivalent to the boolean function
∧n

i=1 xi

(see proposition F.3). In the special case n = 2 we

get the piecewise function, ∂∧(x, y) = 1/2 + 1/2(x +
y)(min(x, y) − 1/2) if min(x, y) > 1/2, and ∂∧(x, y) =
min(x, y)+ 1/2(x+ y)(1/2−min(x, y)) otherwise. Note

2

Figure 3. Gradient-rich versus gradient-sparse differentiable boolean functions. Each column contains contour plots of functions f(x, y)
that are hard-equivalent to a boolean function (one of ¬(x⊕ y), x ∧ y, x ∨ y, or x ⇒ y). Every function is continuous and differentiable

a.e. (white lines indicate non-continuous derivatives). The upper plots are gradient-sparse, where vertical and horizontal contours indicate

the function is constant with respect to one of its inputs, i.e. ∂f/∂y = 0 or ∂f/∂x = 0. The lower plots are gradient-rich, where the

curved contours indicate the function always varies with respect to any of its inputs, i.e. ∂f/∂y ̸= 0 and ∂f/∂x ̸= 0. ∂B nets use

gradient-rich functions to ensure that error is always backpropagated to all inputs.

that ∂∧ is differentiable a.e. and gradient-rich (see Fig-

ure 3). The differentiable analogue of ∨ is identical to ∧,

except the representative bit is selected by max. The func-

tion ∂∨(x) = augmented-bit(x, argmaxi x[i]) is hard-

equivalent to the boolean function
∨n

i=1 xi (see proposition

F.4) (see Figure 3). The differentiable analogue of ⇒ (ma-

terial implication) is defined in terms of ∂∨. The function

∂⇒(x, y) = ∂∨(y, 1− x), is hard-equivalent to x ⇒ y (see

proposition F.5). We can define analogues of all the basic

boolean operators in a similar manner.

2.4. Differentiable majority

The boolean majority function is particularly important for

tractable learning because it is a threshold function:

Maj(x) =

⌊

1

2
+

∑n
i=1 xi − 1/2

n

⌋

,

where we count False as 0 and True as 1. We aim to con-

struct a differentiable analogue of Maj.

Maj for n bits in DNF form is a disjunction of
(

n
k

)

conjunc-

tive clauses of size k, where k = ⌈n/2⌉. In principle we

can implement a differentiable analogue of Maj in terms

of ∂∧ and ∂∨. However, the number of terms grows expo-

nentially with the variables. No general algorithm exists

to find the minimal representation of Maj for arbitrary n.

Instead, we trade-off time for memory costs. Assume that

the function sort(x) sorts the elements of x in ascending

order. Then the ‘median’ soft-bit, majority-index(x) =

⌈ |x|
2 ⌉, is representative. Applying margin pack-

ing, define the differentiable function ∂Maj(x) =
augmented-bit(sort(x),majority-index(x)), which is

hard-equivalent to Maj (see theorem F.7). Note that ∂Maj
is differentiable a.e. and gradient-rich (see Figure 4). If sort
is quicksort then the average time-complexity of ∂Maj is

O(n log n), which makes ∂Maj more expensive than ∂¬,

∂∧, ∂∨ and ∂⇒ at training time. The sort operation could

be replaced by the Floyd-Rivest algorithm, which has lin-

ear average time complexity (Kiwiel, 2005). However, in

the hard ∂B net we efficiently implement Maj as a discrete

program that simply checks if the majority of bits are high.

Note that we use sort to define a differentiable function that

is exactly equivalent to a discrete function (rather than defin-

ing a continuous approximation to sorting, e.g. Cuturi et al.

(2019), Grover et al. (2019) and Petersen et al. (2022b)).

We apply this methodology to construct functions that

harden to other kinds of boolean functions, such as boolean

counting (see Section C). This basic set of functions is suf-

ficient to learn non-trivial relationships from data. ∂B net

layers are compositions of these functions, where composi-

tion preserves hard-equivalence (see Sections A and B).

3. Learning discrete functions

We briefly illustrate the kind of discrete program that ∂B
nets can learn. Consider the toy problem of predicting

3

Figure 4. Differentiable boolean majority. The boolean majority function for three variables in DNF form is Maj(x, y, z) = (x ∧
y) ∨ (x ∧ y) ∨ (y ∧ z). The upper row contains contour plots of f(x, y, z) = min(max(x, y),max(x, z),max(y, z)) for values of

z ∈ {0.2, 0.4, 0.6, 0.8}. f is differentiable and ▶Maj but gradient-sparse (vertical and horizontal contours indicate constancy with

respect to an input). Also, the number of terms in f grows exponentially with the number of variables. The lower row contains contour

plots of ∂Maj(x, y, z) for the same values of z. ∂Maj is differentiable and ▶Maj yet gradient-rich (curved contours indicate variability

with respect to any inputs). In addition, the number of terms in ∂Maj is constant with respect to the number of variables.

whether a person wears a t-shirt (label 0) or a coat (label

1) conditional on 5 boolean features (see Table 1).

very-cold cold warm very-warm outside label

1 0 0 0 0 1

0 0 0 1 1 1

0 0 1 0 1 0

0 0 0 1 0 0

.

Table 1. A toy learning problem

We train the ∂B net described in Figure 55. Once trained

we harden the net to a discrete program (see Section D)

that generates 2 hard-bits, corresponding to each label. The

program symbolically simplifies to:

def dbNet(very-cold, cold, warm, very-warm, outside):

return [

4 !very-cold + 4 !cold + (3 warm + !warm) + (very-warm + 3 !very-

warm) + (outside + 3 !outside) >= 11,

(very-cold + 3 !very-cold) + 4 cold + 4 !warm + (3 very-warm + !

very-warm) + 2 (outside + !outside) >= 11

]

Note that the program linearly weights multiple pieces of

evidence due to the presence of the ∂Maj operator (overkill

for this toy problem). We can read-off that the ∂B net has

learned ‘if not very-cold and not cold and not outside then

wear a t-shirt’; and ‘if cold and not (warm or very-warm)

and outside then wear a coat’ etc. Section E compares ∂B
net performance against other classification algorithms on

standard machine learning problems.

4. Related work

Binary neural networks, e.g. Courbariaux et al. (2015), re-

duce real weights and/or activations to binary, saving model

size and inference costs. The binarization step is lossy,

which loses accuracy (Qin et al., 2020). Deep differentiable

logic gate networks (Petersen et al., 2022a) consist of 2-

input neurons arranged in a fixed topology. Each neuron

learns a differentiable probability distribution over the 16

possible binary functions. Post-training the neurons are

discretized to the most probable binary function. This step

is lossy, which loses accuracy. ∂B nets aim to explore the

design space of differentiable nets that enable lossless hard-

ening.

5. Conclusion

∂B nets are differentiable nets that are hard-equivalent to

non-differentiable, boolean-valued functions. ∂B nets can

therefore learn discrete functions by gradient descent. En-

suring hard-equivalence requires defining new kinds of acti-

vation functions and network layers. ‘Margin packing’ is a

potentially general technique for constructing differentiable

functions that are hard-equivalent yet gradient-rich. An ad-

vantage of ∂B nets is that ‘hardening’ to 1-bit weights has

provably identical accuracy. At inference time ∂B nets are

highly compact and potentially cheap to evaluate. Prelimi-

nary experiments demonstrate that ∂B nets achieve compa-

rable performance to existing approaches.

4

Acknowledgements

GitHub Next sponsored this research. Thanks to Pavel Au-

gustinov, Richard Evans, Johan Rosenkilde, Max Schaefer,

Ganesh Sittampalam, Tamás Szabó, Albert Ziegler and the

anonymous referees for helpful discussions and feedback.

References

Bengio, Y., Léonard, N., and Courville, A. C. Estimating

or propagating gradients through stochastic neurons for

conditional computation. CoRR, abs/1308.3432, 2013.

URL http://arxiv.org/abs/1308.3432.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,

Wanderman-Milne, S., and Zhang, Q. JAX: composable

transformations of Python+NumPy programs, 2018. URL

http://github.com/google/jax.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-

nect: Training deep neural networks with binary weights

during propagations. In Proceedings of the 28th Inter-

national Conference on Neural Information Processing

Systems - Volume 2, NIPS’15, pp. 3123–3131, Cambridge,

MA, USA, 2015. MIT Press.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable ranking

and sorting using optimal transport. In Wallach, H.,

Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,

and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc.,

2019. URL https://proceedings.neurips.

cc/paper_files/paper/2019/file/

d8c24ca8f23c562a5600876ca2a550ce-

Paper.pdf.

Granmo, O.-C. The binary iris dataset. GitHub

repository, a. URL https://github.com/cair/

TsetlinMachine.

Granmo, O.-C. The noisy XOR dataset. GitHub

repository, b. URL https://github.com/cair/

TsetlinMachine.

Granmo, O.-C. The Tsetlin machine – a game theoretic

bandit driven approach to optimal pattern recognition

with propositional logic, 2018. URL https://arxiv.

org/abs/1804.01508.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic

optimization of sorting networks via continuous relax-

ations. In International Conference on Learning Rep-

resentations, 2019. URL https://openreview.

net/forum?id=H1eSS3CcKX.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,

B., Steiner, A., and van Zee, M. Flax: A neural network

library and ecosystem for JAX, 2023. URL http://

github.com/google/flax.

Kiwiel, K. C. On Floyd and Rivest’s SELECT al-

gorithm. Theoretical Computer Science, 347

(1):214–238, 2005. ISSN 0304-3975. doi:

https://doi.org/10.1016/j.tcs.2005.06.032. URL

https://www.sciencedirect.com/

science/article/pii/S0304397505004081.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324, 1998. doi:

10.1109/5.726791.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. Deep

differentiable logic gate networks. In Koyejo, S., Mo-

hamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.

(eds.), Advances in Neural Information Processing Sys-

tems, volume 35, pp. 2006–2018. Curran Associates, Inc.,

2022a. URL https://proceedings.neurips.

cc/paper_files/paper/2022/file/

0d3496dd0cec77a999c98d35003203ca-

Paper-Conference.pdf.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen,

O. Monotonic differentiable sorting networks. In In-

ternational Conference on Learning Representations,

2022b. URL https://openreview.net/forum?

id=IcUWShptD7d.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and

Sebe, N. Binary neural networks: A survey. Pattern

Recognition, 105:107281, 2020. ISSN 0031-3203.

doi: https://doi.org/10.1016/j.patcog.2020.107281.

URL https://www.sciencedirect.com/

science/article/pii/S0031320320300856.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,

I., and Salakhutdinov, R. Dropout: A simple way

to prevent neural networks from overfitting. Jour-

nal of Machine Learning Research, 15(56):1929–1958,

2014. URL http://jmlr.org/papers/v15/

srivastava14a.html.

van Krieken, E., Acar, E., and van Harmelen, F. Ana-

lyzing differentiable fuzzy logic operators. Artificial

Intelligence, 302:103602, 2022. ISSN 0004-3702.

doi: https://doi.org/10.1016/j.artint.2021.103602.

URL https://www.sciencedirect.com/

science/article/pii/S0004370221001533.

5

http://arxiv.org/abs/1308.3432
http://github.com/google/jax
https://proceedings.neurips.cc/paper_files/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d8c24ca8f23c562a5600876ca2a550ce-Paper.pdf
https://github.com/cair/TsetlinMachine
https://github.com/cair/TsetlinMachine
https://github.com/cair/TsetlinMachine
https://github.com/cair/TsetlinMachine
https://arxiv.org/abs/1804.01508
https://arxiv.org/abs/1804.01508
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
http://github.com/google/flax
http://github.com/google/flax
https://www.sciencedirect.com/science/article/pii/S0304397505004081
https://www.sciencedirect.com/science/article/pii/S0304397505004081
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://openreview.net/forum?id=IcUWShptD7d
https://openreview.net/forum?id=IcUWShptD7d
https://www.sciencedirect.com/science/article/pii/S0031320320300856
https://www.sciencedirect.com/science/article/pii/S0031320320300856
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/S0004370221001533
https://www.sciencedirect.com/science/article/pii/S0004370221001533

A. Boolean logic layers

The full variety of ∂B net architectures is to be explored. Here we define basic layers sufficient for the classification

experiments.

A ∂¬Layer of width n learns to negate up to n different subsets of the elements of its input vector:

∂¬Layer : [0, 1]
n×m × [0, 1]m → [0, 1]n×m,

(W,x) 7→







∂¬(w1,1, x1) . . . ∂¬(w1,m, xm)
...

. . .
...

∂¬(wn,1, x1) . . . ∂¬(wn,m, xm)







where x is a soft-bit input vector, W is a weight matrix and n is the layer width. Similarly, A ∂⇒Layer of width n learns to

‘mask to true or nop’ up to n different subsets of the elements of its input vector:

∂⇒Layer(W,x) =







∂⇒(w1,1, x1) . . . ∂⇒(w1,m, xm)
...

. . .
...

∂⇒(wn,1, x1) . . . ∂⇒(wn,m, xm)






.

A ∂∧Neuron learns to logically ∧ a subset of its input vector:

∂∧Neuron : [0, 1]n × [0, 1]n → [0, 1],

(w,x) 7→ min(∂⇒(w1, x1), . . . , ∂⇒(wn, xn)),

where w is a weight vector. Each ∂⇒(wi, xi) learns to include or exclude xi from the conjunction depending on weight

wi. For example, if wi > 0.5 then xi affects the value of the conjunction since ∂⇒(wi, xi) passes-through a soft-bit that

is high if xi is high, and low otherwise; but if wi ≤ 0.5 then xi does not affect the conjunction since ∂⇒(wi, xi) always

passes-through a high soft-bit. A ∂∧Layer of width n learns up to n different conjunctions of subsets of its input (of

whatever size). A ∂∨Neuron is defined similarly:

∂∨Neuron : [0, 1]n × [0, 1]n → [0, 1],

(w,x) 7→ max(∂∧(w1, x1), . . . , ∂∧(wn, xn)).

Each ∂∧(wi, xi) learns to include or exclude xi from the disjunction depending on weight wi. A ∂∨Layer of width n learns

up to n different disjunctions of subsets of its input (of whatever size).

We can compose ∂¬, ∂∧ and ∂∨ layers to learn boolean formulae of arbitrary width and depth.

B. Classification layers

In classification problems the final layer of a neural network is typically interpreted as a vector of real-valued logits, one for

each label, where the index of the maximum logit indicates the most probable label. However, we cannot interpret a soft-bit

vector as logits without violating hard-equivalence. In addition, when training ∂B nets, loss functions should be a function of

hardened bits, otherwise gradient descent may non-optimally traverse trajectories that take no account of the hard threshold

at 1/2. For example, consider that an instance is correctly classified by a 1-hot vector with high bit x = 0.51. Updating

the net’s weights to change this value to 0.51 + ϵ will not improve accuracy and may prevent the correct classification of a

different instance.

For these reasons, ∂B nets have a final ‘hardening’ layer to ensure that loss is a function of hard, not soft, bits:

∂harden : [0, 1]n → [0, 1]n,

x 7→ harden(x).

The harden function is not differentiable and therefore ∂harden uses the straight-through estimator (Bengio et al., 2013)

during backpropagation. By restricting the use of the straight-through estimator to final layers we avoid compounding

gradient estimation errors to deeper parts of the network. Note that ∂harden is hard-equivalent to a nop.

6

∂B nets can re-use many of the techniques deployed in standard neural networks. For example, for improved generalisation,

we define a ‘boolean’ analogue of the dropout layer (Srivastava et al., 2014):

∂dropout : [0, 1]n × [0, 1] → [0, 1]n,

(x, p) 7→ [f(x1, p), . . . , f(xn, p)],

where

f(x, p) =

{

1− x, with probability p

x, otherwise.

At train time ∂dropout randomly negates soft-bit values with probability p. At test time, and in the hard-net, ∂dropout is a

nop.

C. Differentiable counting

A boolean counting function f(x) is True if a counting predicate, c(x), holds over its n inputs. We aim to construct a

differentiable analogue of count(x, k) where c(x) := |{xi : xi = 1}| = k (i.e. ‘exactly k high’), which can be useful in

multiclass classification problems. Define

∂count-hot : [0, 1]n → [0, 1]n+1,

x 7→ low-high(sort(x)),

where
low-high : [0, 1]n → [0, 1]n+1,

x 7→ [∂∧(1, x1), ∂∧(1− x1, x2), . . . , ∂∧(1− xn−1, xn), ∂∧(1− xn, 1)] .

∂count-hot(x) outputs a 1-hot vector where the index of the high bit is the number of low bits in x. Note that ∂count-hot
is differentiable, gradient-rich and hard-equivalent to the boolean function

count-hot : {0, 1}n → {0, 1}n+1,

x 7→ [k-of-n(x, 0), k-of-n(x, 1), . . . , k-of-n(x, n)] ,

where

k-of-n(x, k) =
∨

|S|=k

∧

i∈S

xi

∧

j /∈S

¬xj

(see proposition F.8). However, in the hard ∂B net we efficiently implement count-hot as a discrete program that simply

counts the number of low bits.

We can construct various kinds of boolean counting functions from ∂count-hot. For example, ∂count(x, k) is straightfor-

wardly ∂count-hot(x)[k] where margin-packing ensures that this single soft-bit is gradient-rich.

D. An example of hard-equivalence

The ∂B net specified in Figure 5 (with 40 soft-bit weights) has two single-bit output ports and is hard-equivalent to the

following discrete program (with 40 hard-bit weights):

def dbNet(very-cold, cold, warm, very-warm, outside):

return [

ge(sum((0, not(xor(ne(very-cold, 0), w1)

))), not(xor(ne(cold, 0), w2)))), not(xor(ne(warm, 0), w3)))), not(xor(ne(very-warm, 0), w4)))), not(xor(ne(outside, 0), w5)))),

not(xor(ne(very-cold, 0), w6)))), not(xor(ne(cold, 0), w7)))), not(xor(ne(warm, 0), w8)))), not(xor(ne(very-warm, 0), w9)))), not

(xor(ne(outside, 0), w10)))), not(xor(ne(very-cold, 0), w11)))), not(xor(ne(cold, 0), w12)))), not(xor(ne(warm, 0), w13)))), not(

xor(ne(very-warm, 0), w14)))), not(xor(ne(outside, 0), w15)))), not(xor(ne(very-cold, 0), w16)))), not(xor(ne(cold, 0), w17)))),

not(xor(ne(warm, 0), w18)))), not(xor(ne(very-warm, 0), w19)))), not(xor(ne(outside, 0), w20)))), 11),

ge(sum((0, not(xor(ne(very-cold, 0), w21

)))), not(xor(ne(cold, 0), w22)))), not(xor(ne(warm, 0), w23)))), not(xor(ne(very-warm, 0), w24)))), not(xor(ne(outside, 0), w25)

))), not(xor(ne(very-cold, 0), w26)))), not(xor(ne(cold, 0), w27)))), not(xor(ne(warm, 0), w28)))), not(xor(ne(very-warm, 0), w29

)))), not(xor(ne(outside, 0), w30)))), not(xor(ne(very-cold, 0), w31)))), not(xor(ne(cold, 0), w32)))), not(xor(ne(warm, 0), w33)

))), not(xor(ne(very-warm, 0), w34)))), not(xor(ne(outside, 0), w35)))), not(xor(ne(very-cold, 0), w36)))), not(xor(ne(cold, 0),

w37)))), not(xor(ne(warm, 0), w38)))), not(xor(ne(very-warm, 0), w39)))), not(xor(ne(outside, 0), w40)))), 11)

]

7

Figure 5. A ∂B net to illustrate hardening. The net concatenates a ∂¬Layer (of width 8) with a reshaping layer that outputs two vectors,

which get reduced, by a ∂Maj operator, to 2 soft-bits, one for each class label. A final ∂harden layer ensures the loss is a function of

hard bits. The net’s weights, once hardened, consume 40 bits (5 bytes).

Figure 6. A ∂B net for the binary Iris problem. The net concatenates the soft-bit input, x (length 16), with its negation, 1− x, and

supplies the resulting vector (length 32) to a ∂∧Layer (width 59), a ∂dropout layer for improved generalisation, a ∂count-hot layer that

generates a 1-hot vector (width 60) that is reduced by max to a 1-hot vector of 3 classification bits. A final ∂harden ensures the loss is a

function of hard bits. The net’s weights, once hardened, consume 236 bytes.

E. Experiments

The ∂B net library is implemented in Flax (Heek et al., 2023) and JAX (Bradbury et al., 2018) and available at github.

com/Z80coder/db-nets. The library supports the specification of a ∂B net as Python code, which automatically defines

(i) the soft-net for training (weights are floats), (ii) a hard-net for inference (weights are booleans), and (iii) a symbolic net

for interpretation (weights and inputs are symbols). The symbolic net, when evaluated, interprets its own JAX expression

and outputs a description of the discrete program it computes.

We compare the performance of ∂B nets against standard ML approaches on three problems: the classic Iris dataset, an

adversarial noisy XOR problem, and MNIST.

E.1. Binary Iris

The Iris dataset has 150 examples with 4 inputs (sepal length and width, and petal length and width), and 3 labels (setosa,

versicolour, and virginica). We use the binary version of the Iris dataset (Granmo, a) where each input float is represented

by 4 bits. We perform 1000 experiments, each with a different random seed. Each experiment randomly partitions the data

into 80% training and 20% test sets. We initialize the network, described in Figure 6, with all weights wi = 0.3 and train for

8

github.com/Z80coder/db-nets
github.com/Z80coder/db-nets

accuracy

mean 5 %ile 95 %ile min max

Tsetlin 95.0 +/- 0.2 86.7 100.0 80.0 100.0

∂B 93.9 +/- 0.1 86.7 100.0 80.0 100.0

neural network 93.8 +/- 0.2 86.7 100.0 80.0 100.0

SVM 93.6 +/- 0.3 86.7 100.0 76.7 100.0

naive Bayes 91.6 +/- 0.3 83.3 96.7 70.0 100.0

Table 2. Binary Iris results measured over 1000 experiments.

Figure 7. A ∂B net for the noisy xor problem. The net concatenates the soft-bit input, x (length 12), with its negation, 1− x, and supplies

the resulting vector (length 24) to a ∂∧Layer (width 32), ∂∨Layer (width 32), ∂¬Layer (width 16), and a final ∂Maj to produce a single

soft-bit y ∈ [0, 1] (to predict odd parity) and its negation 1− y (to predict even parity). The net’s weights, once hardened, consume 288
bytes.

1000 epochs with the RAdam optimizer and softmax cross-entropy loss.

We measure the accuracy of the final net to avoid hand-picking the best configuration. Table 2 compares the δB net against

other classifiers (Granmo, 2018). Naive Bayes performs the worst. The Tsetlin machine performs best on this problem, with

the ∂B net second.

E.2. Noisy XOR

The noisy XOR dataset (Granmo, b) is an adversarial parity problem with noisy non-informative features. The dataset

consists of 10K examples with 12 boolean inputs and a target label (where 0 = odd and 1 = even) that is a XOR function

of 2 of the inputs. The remaining 10 inputs are entirely random. We train on 50% of the data where, additionally, 40%

of the labels are inverted. We initialize the network described in Figure 7 with random weights distributed close to the

hard threshold at 1/2 (i.e. in the ∂∧Layer, wi = 0.501× b + 0.3× (1− b) where b ∼ Bernoulli(0.01); in the ∂∨Layer,
wi = 0.7× b+ 0.499× (1− b) where b ∼ Bernoulli(0.99)); and in the ∂¬Layer, wi ∼ Uniform(0.499, 0.501). We train

for 2000 epochs with the RAdam optimizer and softmax cross-entropy loss.

We measure the accuracy of the final net on the test data to avoid hand-picking the best configuration. Table 3 compares the

∂B net against other classifiers (Granmo, 2018). The high noise causes logistic regression and naive Bayes to randomly

guess. The SVM hardly performs better. In contrast, the multilayer neural network, Tsetlin machine, and ∂B net all

successfully learn the underlying XOR signal. The Tsetlin machine performs best on this problem, with the ∂B net second.

E.3. MNIST

The MNIST dataset (LeCun et al., 1998) consists of 60K training and 10K test examples of handwritten digits (0-9). We

binarize the data by replacing pixels with grey value greater than 0.3 with 1, otherwise with 0. We initialize the network

9

accuracy

mean 5 %ile 95 %ile min max

Tsetlin 99.3 +/- 0.3 95.9 100.0 91.6 100.0

∂B 97.9 +/- 0.2 95.4 100.0 93.6 100.0

neural network 95.4 +/- 0.5 90.1 98.6 88.2 99.9

SVM 58.0 +/- 0.3 56.4 59.2 55.4 66.5

naive Bayes 49.8 +/- 0.2 48.3 51.0 41.3 52.7

logistic regression 49.8 +/- 0.3 47.8 51.1 41.1 53.1

Table 3. Noisy XOR results measured over 100 experiments.

Figure 8. A non-convolutional ∂B net for MNIST. The input is a 28× 28 bit matrix representing an image. The net consists of a ∂⇒Layer
(of width 60, to produce a 2940 × 16 reshaped array), a ∂Maj layer (to produce a vector of size 2940), a ∂¬Layer (of width 20, to

produce a 20× 2940 array), and a final ∂harden operator to generate hard-bits split into 10 buckets and summed to produce 10 integer

logits. The net’s weights, once hardened, consume 13.23 kb.

described in Figure 8 with random weights distributed as wi = 0.501× b+ 0.3× (1− b) where b ∼ Bernoulli(0.01). We

train for 1000 epochs with a batch size of 6000 using the RAdam optimizer and softmax cross-entropy loss.

We measure the accuracy on the final net. Table 4 compares the ∂B net against other classifiers (reference data taken from

Granmo (2018)). Basic versions of the algorithms (e.g. no convolutional nets) are applied to unenhanced data (e.g. no data

augmentation). The aim is to compare raw performance rather than optimise for MNIST. A 2-layer neural network trained

on grey-value pixel data performs best. A Tsetlin machine of 40,000 automata each with 256 states (and therefore 40 kb of

parameters) trained on binary data achieves ≈ 98.2% accuracy. A ∂B net with 105,840 soft-bit weights that harden to 1-bit

booleans (and therefore 13.23 kb of parameters) trained on binary data achieves ≈ 94.0% accuracy. However, this ∂B net

underfits the training data and we expect better performance from a larger model.

F. Proofs

Proposition F.1. ∂¬(x, y) ▶ ¬(x⊕ y).

Proof. Table 5 is the truth table of the boolean function ¬(x⊕ w), where h(x) = harden(x).

Lemma F.2. If a representative bit, xi, is hard-equivalent to a target function, g, then so is the augmented bit, z.

Proof. As xi is representative then harden(xi) = g(harden(x)). The augmented bit, z, is given by (1):

z =

{

1/2 + x̄× |xi − 1/2| if xi > 1/2

xi + x̄× |xi − 1/2| otherwise.

10

accuracy

2-layer NN, 800 HU, cross-entropy loss 98.6

Tsetlin 98.2 +/- 0.0

K-nearest-neighbours, L3 97.2

∂B 94.0

Logistic regression 91.5

Linear classifier (1-layer NN) 88.0

Decision tree 87.8

Multinomial Naive Bayes 83.2

Table 4. MNIST results. A classifier in italics was trained on grey-value pixel data, otherwise the classifier was trained on binarized data.

Note: the ∂B results are from a small model that under-fits the data (due to OOM errors on my GPU). The next draft will include results

using a larger ∂B net.

x y h(x) h(y) ∂¬(x, y) h(∂¬(x, y)) ¬(h(y)⊕ h(x))

[

0, 1
2

) [

0, 1
2

)

0 0
(

1
2 , 1

]

1 1
(

1
2 , 1

] [

0, 1
2

)

1 0
[

0, 1
2

)

0 0
[

0, 1
2

) (

1
2 , 1

]

0 1
[

0, 1
2

)

0 0
(

1
2 , 1

] (

1
2 , 1

]

1 1
(

1
2 , 1

]

1 1

Table 5. ∂¬(x, y) ▶ ¬(y ⊕ x).

In consequence,

harden(z) =

{

1 if x > 1/2

0 otherwise,

since xi > 1/2 ⇒ z > 1/2 and xi ≤ 1/2 ⇒ z ≤ 1/2. Hence, harden(z) = harden(xi) = g(harden(x))

Proposition F.3. ∂∧(x, y) ▶ x ∧ y.

Proof. Table 6 is the truth table of the boolean function x ∧ y, where h(x) = harden(x)..

x y h(x) h(y) ∂∧(x, y) h(∂∧(x, y)) h(x) ∧ h(y)

[

0, 1
2

) [

0, 1
2

)

0 0
[

0, 1
2

)

0 0
(

1
2 , 1

] [

0, 1
2

)

1 0
(

1
4 ,

1
2

)

0 0
[

0, 1
2

) (

1
2 , 1

]

0 1
(

1
4 ,

1
2

)

0 0
(

1
2 , 1

] (

1
2 , 1

]

1 1
(

1
2 , 1

]

1 1

Table 6. ∂∧(x, y) ▶ x ∧ y.

Proposition F.4. ∂∨(x, y) ▶ x ∨ y.

Proof. Table 7 is the truth table of the boolean function x ∨ y, where h(x) = harden(x)..

Proposition F.5. ∂⇒(x, y) ▶ x ⇒ y.

Proof. Table 8 is the truth table of the boolean function x ⇒ y, where h(x) = harden(x)..

Lemma F.6. Let i = majority-index(x), then the ith element of sort(x) is hard-equivalent to boolean majority, i.e.

harden(sort(x)[i]) = Maj(harden(x)).

11

x y h(x) h(y) ∂∨(x, y) h(∂∨(x, y)) h(x) ∨ h(y)

[

0, 1
2

) [

0, 1
2

)

0 0
[

0, 1
2

)

0 0
(

1
2 , 1

] [

0, 1
2

)

1 0
(

1
2 , 1

]

1 1
[

0, 1
2

) (

1
2 , 1

]

0 1
(

1
2 , 1

]

1 1
(

1
2 , 1

] (

1
2 , 1

]

1 1
(

1
2 , 1

]

1 1

Table 7. ∂∨(x, y) ▶ x ∨ y.

x y h(x) h(y) ∂⇒(x, y) h(∂⇒(x, y)) h(x) ⇒ h(y)

[

0, 1
2

) [

0, 1
2

)

0 0
(

1
2 , 1

]

1 0
(

1
2 , 1

] [

0, 1
2

)

1 0
[

0, 1
2

)

0 0
[

0, 1
2

) (

1
2 , 1

]

0 1
(

1
2 , 1

]

1 0
(

1
2 , 1

] (

1
2 , 1

]

1 1
(

1
2 ,

7
8

)

1 0

Table 8. ∂⇒(x, y) ▶ x ⇒ y.

Proof. Let h denote the number of bits that are high in x = [x1, . . . , xn]. Then indices {j : n− h+1 ≤ j ≤ n} are high in

sort(x). If the majority of bits are high, h ≥ ⌊n/2+1⌋, then index j = n−⌊n/2+1⌋+1 = n−⌊n/2⌋ = ⌈n/2⌉ is high in

sort(x). majority-index selects index i = ⌈n/2⌉ and therefore i = j. Hence, if the majority of bits are high then sort(x)[i]
is high. Similarly, if the majority of bits are low, h < ⌊n/2+ 1⌋, then index j = n− ⌊n/2+ 1⌋+ 1 = n− ⌊n/2⌋ = ⌈n/2⌉
is low in sort(x). Hence, if the majority of bits are low then sort(x)[i] is low.

Note that h ≥ ⌊n/2 + 1⌋ implies that Maj(harden(x)) ≥
⌊

1
2 + 1

n

(

n
2 + 1− 1

2

)⌋

≥
⌊

1 + 1
2n

⌋

= 1, and h < ⌊n/2 + 1⌋

implies that Maj(harden(x)) <
⌊

1 + 1
2n

⌋

= 0.

In consequence, harden(sort(x)[i]) = Maj(harden(x)) for all h ∈ [0, . . . , n].

Theorem F.7. ∂Maj ▶ Maj.

Proof. ∂Maj augments the representative bit xi = sort(x)[majority-index(x)]. By lemma F.6 the representative

bit is ▶ Maj(harden(x)). By lemma F.2, the augmented bit, augmented-bit(sort(x),majority-index(x)), is also

▶Maj(harden(x)). Hence ∂Maj ▶Maj.

Proposition F.8. ∂count-hot ▶ count-hot.

Proof. Let l denote the number of bits that are low in x = [x1, . . . , xn], and let y = ∂count-hot(x). Then y[l + 1] is high

and any y[i], where i ̸= l + 1, is low. Let z = count-hot(harden(x)). Then z[l + 1] is high and any z[i], where i ̸= l + 1,

is low. Hence, harden(y) = z, and therefore ∂count-hot ▶ count-hot.

12

