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Abstract

We consider the problem of learning observation

models for robot state estimation with incremental

non-differentiable optimizers in the loop. Conver-

gence to the correct belief over the robot state

is heavily dependent on a proper tuning of ob-

servation models which serve as input to the op-

timizer. We propose a gradient-based learning

method which converges much quicker to model

estimates that lead to solutions of much better

quality compared to an existing state-of-the-art

method as measured by the tracking accuracy over

unseen robot test trajectories.

1. Introduction

Robot state estimation is the problem of inferring the state

of a robot (a set of geometric or physical quantities such

as position, orientation, contact forces etc.) given sensor

measurements. The problem is typically formulated as Max-

imum a Posteriori (MAP) inference over factor graphs where

each node (robot state) is connected to other states via soft

constraints or potentials (factors) which are distilled from

sensor measurements. Given a factor graph, a potential way

to perform the inference step is to convert it to a chordal

Bayes Net using an exact inference technique (i.e. variable

elimination) and then in turn, convert the Bayes Net to a

tree like structure (i.e. junction tree) where inference can be

made easier. However, this procedure can become ill-suited

for real-time state estimation especially if the number of

variables in the problem increases with time (i.e. as the

robot navigates the environment). The Bayes tree (Kaess

et al., 2011) was introduced to tackle this problem. It is a

tree structure where nodes are formed from the maximal

cliques of a chordal Bayes net. The Bayes tree is directed

and maintains the conditional independences described by

the original Bayes net. In addition, it allows for fast incre-

mental inference which corresponds to simple tree editing.
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iSAM2 (Kaess et al., 2012) is an optimizer that leverages the

Bayes tree to solve incremental (i.e. as the number of factors

N grows continuously) inference problems formulated as a

factor graph. In essence, it solves problems of the form:

x
∗ = argmin

x

N∑

i=1

1

2
||gi(xi)− zi||

2
θi

(1)

or equivalently the MAP inference problem:

x
∗ = argmax

x

N∏

i

φi(xi) (2)

where φi are the potentials assumed to take the form

φi∝exp
(
− 1

2 ||gi(xi)− zi)||
2
θi

)
, x is the vector of unknown

states, xi a subset of x, and z = {zi} are the sensor mea-

surements. Batch solvers such as Levenberg-Marquardt per-

form the typical linearize-solve loop which quickly becomes

prohibitively expensive as the size of the problem grows.

iSAM2, on the other hand, leverages the Bayes tree and

uses fluid relinarization and partial state updates making it

the de-facto optimizer for online smoothing-based state esti-

mation problems in robotics. However, these features also

prevent iSAM2 from being differentiable (i.e. dependence

on relinearization thresholds, inherent non-differentiable

operations such as removal and re-insertion of tree nodes.)

On the other hand, the quality of the solution of eq.1 is

largely dependent on a proper selection of the observation

models {θi} which parameterize the joint or conditional

distributions over states and measurements. However, due

the non-differentiability of iSAM2, current methods to tune

these parameters are generally sampling-based which are

slow and may converge to poor optimas. In this work, we

propose a gradient-based optimization-based approach to

tune {θi} with iSAM2 in the loop using a direct tracking

error loss. We compare our method with a state-of-the-

art sampling-based method on a synthetic robot navigation

example and show that our procedure converges order-of-

magnitude faster to a better solution as measured by the

tracking accuracy over unseen robot test trajectories.

2. Related Work

Early state estimation techniques such as the family of

Kalman Filters (Julier & Uhlmann, 2004; Thrun et al., 2001)
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Figure 1. The parameter vector θt serve as input to the least squares problem which is solved by iSAM2. Gradients of the solution with

respect to the parameters are computed and used to update θ
t+1

rely on the Markov assumption to enable real-time perfor-

mance. Recent algorithms have been proposed to make

these filters differentiable (Kloss et al., 2021; Sun et al.,

2016; Haarnoja et al., 2016). However, the inherent reliance

on the Markov assumption and the inability to re-linearize

past states can lead to convergence to poor solutions. Hence,

state-of-the-art robotic state estimation algorithms moved

to factor graph-based solutions which encode the inherent

temporal structure avoiding the need to marginalize past

states and providing methods to relinearize past estimates

(Kaess et al., 2012; Qadri et al., 2022). However, observa-

tion models on factor graphs are either pre-specified and

fixed (Lambert et al., 2019; Engel et al., 2014) or learned

using surrogate losses independent of the graph optimizer

or final tracking performance (Sodhi et al., 2021; Sundar-

alingam et al., 2019; Czarnowski et al., 2020). Methods

that differentiate through the argmin operator in eq. 1 by

unrolling the optimizer can be used to learn these models

(Yi et al., 2021; Jatavallabhula et al., 2020; Bechtle et al.,

2021). However, these techniques are typically sensitive

to hyperparameters such as the number of unrolling steps

(Amos & Yarats, 2020) in addition to suffering from vanish-

ing as well as high bias and variance gradients. Recently,

a novel method LEO (Sodhi et al., 2022) took advantage

of the probabilistic view offered by iSAM2 (as a solver of

eq.2) to provide a way to learn observation models, with

iSAM2 in the loop, by minimizing a novel tracking error. In

essence, at every training iteration LEO samples trajectories

from the posterior distribution (a joint Gaussian distribution

over the states) and the deviation with respect to the ground

truth trajectory is minimized using an energy-based loss. In

this work, we use LEO as our baseline.

3. Method

In this work, we view the incremental optimizer (iSAM2)

as a function f : X × θ → X which takes initial estimates

of the state x ∈ X : M1 × . . . × Mn at timestep t (the

number of states increases with time), as well as parameters

θ = {θi | θi ∈ Sni

++} and returns an estimate of the optimal

state x∗ ∈ X after performing N update steps. Here, Mi

is a Lie Group (for example the special Euclidean group

SE(n)) and Sni

++ is the set of ni × ni positive definite

matrices .

Our goal is to learn the parameters {θi} using gradient-

based methods from observed ground truth robots trajec-

tories xGT . Specifically, We consider the following inner-

outer optimization procedure:

Inner Loop: x̂ = argmin
x

∑

i

1

2
||gi(x)− zi||

2
θi

(3)

Outer Loop: min
θ

L(x̂(θ),xGT ) (4)

Note that the gradient ∂L
∂θ

, requires an estimate of ∂x̂
∂θ

. Al-

though iSAM2 includes different non-differentiable opera-

tions, the gradient of the solution with respect to the param-

eter vector ∂x̂
∂θ

exists and can be computed by the implicit

function theorem (Dontchev et al., 2009) as done in exist-

ing work in convex optimization (Amos & Kolter, 2017;

Agrawal et al., 2019). Note that the original theorem con-

sider functions operating on vector spaces. However, the

theorem can readily be extended to other manifolds by ap-

plying the appropriate group operations.

The Implicit Function Theorem:

Let x̂ := {x | f(x,θ) = 0} where x ∈ X and θ =
{θi | θi ∈ Sn

++}. Let f be continuously differentiable in the

neighborhood of (x̂,θ) namely ∇xf(x̂,θ) be nonsingular.

Then:

∂x̂

∂θ
= −

(
∂f(x̂(θ),θ)

∂x

)−1
∂f(x̂(θ),θ)

∂θ
(5)

The gradient in eq. 5 can be derived and computed analyt-

ically. However, we note that since the size of parameter

vector θ is typically small (for example, each θi has a max-

imum of 6 free parameters when working with elements

in SE(2)), numerical differentiation proved to be efficient

especially when coupled with parallelization on CPU.
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Figure 2. Convergence as a function of training time measured in minutes. Both methods were run for 100 training iterations. Our method

converges after a few seconds while each iteration of LEO takes approximately 2.5 minutes. Additionally, our method converges to

parameters that track the training trajectories more accurately.

Figure 3. Accuracy on the test set. Our method converges to parameters that generalize and track the test trajectories more accurately.

3.1. Numerical Jacobians over Lie Groups

3.1.1. JACOBIANS ON VECTOR SPACES

Given a multivariate function f : Rm → R
n, the Jacobian

is defined as the n×m matrix:

∂f(x)

∂x
=






∂f1
∂x1

. . . ∂f1
∂xm

...
...

...
∂fn
∂x1

. . . ∂fn
∂xm




 (6)

where ∂f
∂xi

= lim
h→0

f(x+hei)−f(x)
h

and ei is the ith standard

basis of Rm.

3.1.2. LEFT JACOBIANS ON LIE GROUPS

We can similarly define the left Jacobian of functions acting

on manifolds f : N → M as the linear map from the Lie

algebra Tϵ(N ) of N to Tϵ(M), the Lie algebra of M:

ϵDf(X )

DY
= lim

τ→0

f(τ ⊕ Y)⊖ f(Y)

τ
(7)

= lim
τ→0

Log(f(Exp(τ) ◦ Y) ◦ f(Y)−1)

τ
(8)

where Y ∈ N , τ is a small increment defined on Tϵ(N ).
The Exp operator map elements from a Lie Group to its alge-

bra while the Log operator map elements from the algebra to

the group. ⊕, ⊖, and ◦ are the plus, minus, and composition

operators respectively (Sola et al., 2018) where:

τ ⊕ Y = Exp(τ) ◦ Y (9)

τ = Y1 ⊖ Y2 = Log(Y1 ◦ Y
−1
2 ); Y1,Y2 ∈ N (10)

In this work, N = Sn1

++ × . . .× Snm

++ and M = X . Addi-

tionally, we assume that each vector θi are the square root

elements of some corresponding diagonal positive definite

matrix Σi ∈ Sni

++. i.e., we define the following map:

θi =
(
diag−1(Σi)

)2
∈ R

ni (11)

Hence, τ ∈ R
ni and the operator ⊕ is the standard addition

on vector space R
ni .

3.2. Tracking Loss

Let a parameter estimate θ
t ∈ R

m. The outer loss is the

regularized mean squared error between the estimated trajec-

tory x̂(θt) and the ground truth xGT . Let D be the training

set, T be the total number of states in xGT, D be the sum of
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the lie algebra dimensions of all states, and λ ∈ R:

L(θ) =
1

2|D|

|D|
∑

j=1

||vec(x̂j(θt)⊖ xGT )||
2
2 + λ||θt||22 (12)

∂L

∂θ
=

1

|D|

|D|
∑

j=1

S(x̂j(θt))T · vec(x̂j(θt)⊖ xGT )
︸ ︷︷ ︸

∈RTD

+2λθt

(13)

where vec is the vectorization operator and S(x̂(θt)) ∈
R

TD×m is a matrix such that each row r is equal to:

S(x̂j(θt))r = vec

(
∂x̂j

∂θij

)

= lim
τij→0

vec(Log(x̂j(θ̃
t
) ◦ x̂j(θt)−1))

τij
(14)

where θ̃tij = θtij + τij and θ̃
t
= θ

t otherwise. By the

implicit function theorem, the gradient ∂x̂
∂θij

exists and is

estimated in eq. 14 using finite differencing by perturbing

the parameter θij by τij . Parameters are then updated using

gradient descent with learning rate α:

θ
t+1 = θ

t − α ·
∂L

∂θ
(15)

4. Results

Table I. Comparison between LEO and Ours (final training runtime

and error, test error statistics).

LEO (D1) Ours (D1) LEO (D2) Ours (D2)

Num training iterations 100 100 100 100

Parallelization enabled during training yes no yes no

Time per training iteration (min) 2.863 0.025 3.773 0.022

Num of training trajectories 5 5 5 5

Length of training trajectories 300 100 300 100

Avg training RMS translation error (m) 0.385 0.236 1.179 0.730

Avg training RMS rotation Avg error (rad) 0.087 0.062 0.467 0.051

Num test trajectories 20 20 20 20

Length of test trajectories 300 300 300 300

Avg test RMS translation error (m) 0.384 0.238 1.153 0.733

Avg test RMS rotation error (rad) 0.067 0.063 0.463 0.050

We use two synthetic planar (i.e. in SE(2)) robotic naviga-

tion datasets D1 and D2 consisting of GPS and odometric

measurements. Each dataset uses a different set of parame-

ters {θGPS, θodom}Di
to generate N trajectories (more details

in appendix A.1). We use 5 training ground truth trajectories

of length1 300 to train LEO2 and 5 training trajectories of

length 100 to train our method. We use a set of 20 unseen

trajectories (all of length 300) to test the tracking perfor-

mance given our final learned parameters (the testing set is

fixed for both methods). For LEO, we enable multithreaded

parallel trajectory sampling while do not use any form of

parallelization with our technique.

1Length refers to the number of nodes in the graph optimizer
2We use the official implementation of LEO by Paloma et al.

At each training iteration, iSAM2 optimizes the inner loop

(eq. 3) objective for both methods:

x̂=argmin
x

G(θ,x; z)=argmin
x

1

2

∑

i

(

||ggps(xi)−z
gps
i ||2θgps

+
1

2
||godom(xi−1, xi)− zodom

i−1,i||
2
θodom

)

(16)

Our method then updates the parameters θ using eq.15 while

LEO minimizes the following energy-based loss:

L(θ)=
1

|D|

∑

(xj
gt,z

j)∈D

E(θ,xj
gt; z

j)+log

∫

x

e−E(θ,x;zj)dx (17)

where (xj
gt, z

j) is a ground truth sample from the training

set D, the energy E(θ,x; z) := G(θ,x; z), and the integral

is over the space of trajectories. Fig. 2 shows the training

time and root mean squared error (RMSE) at each iteration.

Fig. 3 shows the RMSE on the test set, and table I gives

a summary of the results. We note that our method con-

verges to parameters that lead to better tracking accuracy on

all unseen test trajectories. In addition, while LEO needs

to generate samples from a high dimensional probability

distribution during training which is a time consuming pro-

cess, our method generates gradients by directly comparing

deviation from the training trajectories leading to order-of-

magnitude faster training time. We additionally analyze the

performance of both methods as a function of the training

set size and provide the results in appendix A.2.

5. Conclusion and Future Work

We presented a gradient-based learning algorithm which

estimates observation models with non-differentiable op-

timizers (iSAM2) in the loop for robotic state estimation.

While current state of the art algorithms require sampling

trajectories from the posterior distribution to bypass the

non-differentiability of the optimizer, our technique learns

parameters by formulating the problem as a bilevel opti-

mization procedure where gradients are generated through

numerical differentiation.

For future work, we want to extend our algorithm to learn

parameters {θi}, with iSAM2 in the loop, that are them-

selves functions of observations i.e. θi(zi, φi) where φi can,

for example, be the weights of a jointly trained neural net-

work. Indeed, the outputs of the network can be perturbed

to approximate ∂x̂
∂θi

as proposed in this work and then sim-

ply chained with the gradient ∂θi
∂ϕ

(obtainable from existing

auto-differentiation packages such as PyTorch) to get the

gradient of the optimized output trajectory with respect to

network weights. We plan to compare the sample efficiency,

training time, and generalization performance of our method

against different baselines. Finally, we plan to train our al-

gorithm on real robotics data and deploy our state estimator

on real robotics platforms.
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A. Appendix

A.1. Additional Details on Experimental Setup

Figure 4. The factor graph used to generate the synthetic robot navigation trajectories.

Figure 4 shows the structure of the factor graph used to generate the synthetic robot navigation trajectories. A unary GPS

factor ggps(xi) is added to each pose xi while a binary odometry factor ggps(xi, xi−1) is specified between poses. To

simulate realistic robot navigation trajectories for each of datasets D1 and D2, Gaussian noise ∼ N (0, θodom) is injected to

ground truth relative odometry measurements while Gaussian noise ∼ N (0, θgps) is added to absolute ground truth GPS

measurements.

A.2. Additional Experiments

We analyze our method and LEO as a function of the training set size. Tables II and III show the average training and testing

RMS errors on datasets D1 and D2 respectively. We note that our method possesses a much faster training time as well as

learns parameters that generalize better to unseen test trajectories regardless of the training set size.

Table II. Dataset D1 - Comparison between LEO and Ours (final training runtime and error, test error statistics).

Num trajectory in training set 1 5 10 20 30

Algorithm LEO Ours LEO Ours LEO Ours LEO Ours LEO Ours

Num training iterations 100 100 100 100 100 100 100 100 100 100

Parallelization enabled during training yes no yes no yes∗ no yes∗ no yes∗ no

Time per training iteration (min) 0.937 0.005 2.863 0.025 4.370 0.045 4.899 0.091 7.56 0.136

Average training RMS translation error (m) 0.379 0.257 0.385 0.236 0.383 0.243 0.386 0.243 0.385 0.236

Average training RMS rotation Avg error (rad) 0.071 0.060 0.087 0.062 0.076 0.063 0.079 0.068 0.079 0.064

Num test trajectories 20 20 20 20 20 20 20 20 20 20

Length of test trajectories 300 300 300 300 300 300 300 300 300 300

Average test RMS translation error (m) 0.385 0.237 0.384 0.238 0.385 0.238 0.384 0.240 0.384 0.235

Average test RMS rotation error (rad) 0.067 0.059 0.067 0.063 0.067 0.063 0.067 0.069 0.067 0.066

Table III. Dataset D2 - Comparison between LEO and Ours (final training runtime and error, test error statistics).

Num trajectory in training set 1 5 10 20 30

Algorithm LEO Ours LEO Ours LEO Ours LEO Ours LEO Ours

Num training iterations 100 100 100 100 100 100 100 100 100 100

Parallelization enabled during training yes no yes no yes∗ no yes∗ no yes∗ no

Time per training iteration (min) 0.934 0.004 3.773 0.022 4.403 0.038 4.901 0.075 6.96 0.113

Average training RMS translation error (m) 1.129 0.715 1.179 0.730 1.090 0.731 1.057 0.718 1.104 0.761

Average training RMS rotation Avg error (rad) 0.443 0.056 0.467 0.051 0.421 0.055 0.407 0.056 0.429 0.045

Num test trajectories 20 20 20 20 20 20 20 20 20 20

Length of test trajectories 300 300 300 300 300 300 300 300 300 300

Average test RMS translation error (m) 1.132 0.728 1.153 0.733 1.583 0.735 1.043 0.734 1.093 0.771

Average test RMS rotation error (rad) 0.447 0.051 0.468 0.050 0.419 0.055 0.402 0.056 0.427 0.045

For LEO, we faced compute memory problems on larger training sets (indicated by an asterix in tables II and III) which

required us to decrease the number of threads and samples (needed to compute the loss in eq. 17). The values of the

hyperparameters used per training set size are specified in table IIII.

Table IIII. Hyperparameters used to train LEO per training set size

Num trajectory in training set 1 5 10 20 30

Number of threads 4 4 3 2 2

Number of samples generated per training trajectory per iteration 10 10 8 4 4
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