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Abstract

We explore conditions for when the gradient of a

deep declarative node can be approximated by ig-

noring constraint terms and still result in a descent

direction for the global loss function. This has im-

portant practical application when training deep

learning models since the approximation is often

computationally much more efficient than the true

gradient calculation. We provide theoretical anal-

ysis for problems with linear equality constraints

and normalization constraints, and show examples

where the approximation works well in practice

as well as some cautionary tales for when it fails.

1. Introduction

This paper investigates certain approximations to gradient

calculations for differentiable constrained optimization prob-

lems. Our focus is on continuous optimizations problems

that may be embedded within deep learning models (Gould

et al., 2016; Amos & Kolter, 2017; Agrawal et al., 2019;

Gould et al., 2021; Blondel et al., 2022). This is in con-

trast to works that compute search directions for back-

propagating through discrete optimization problems where

a true gradient does not exist or is uninformative (i.e., zero

almost everywhere), e.g., (Blondel et al., 2020; Berthet et al.,

2020; Vlastelica et al., 2020; Petersen et al., 2022).

For continuous constrained optimization problems the gra-

dient of a solution with respect to parameters of the problem

(i.e., inputs) can be determined by implicit differentiation of

the problem’s optimality conditions (Amos & Kolter, 2017;

Agrawal et al., 2019; Gould et al., 2021). One of the main

computational difficulties in the presence of constraints is

evaluating quantities of the form (AH−1AT)−1 where A

encodes first derivatives of the constraint functions and H

encodes second derivatives of the objective and constraints.

Gould et al. (2022) observed that for deep models involving
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optimal transport—a well-known differentiable optimiza-

tion problem—ignoring the constraints in the backward pass,

i.e., treating the problem as if it were unconstrained, still

allows the model to learn while greatly speeding the back-

ward pass. This prompts the question explored in this paper:

why and when does this gradient approximation work?

2. Gradient Approximation

In this section we develop theoretical insights for when back-

propagating through a differentiable optimization problem

using an approximate gradient gives a descent direction for

the global loss. Full proofs can be found in the appendix.

The following result for the derivative of the solution to

parametrized equality constrained optimisation problems

comes from Gould et al. (2021)[Prop. 4.5].

Proposition 2.1. (Gould et al., 2021). Consider functions

f : Rn × R
m → R and h : Rn × R

m → R
p. Let

y(x) ∈

{
argminu∈Rm f(x, u)
subject to hi(x, u) = 0, i = 1, . . . , p

}
.

Assume that y(x) exists, that f and h = [h1, . . . , hp]
T are

2nd-order differentiable in the neighborhood of (x, y(x)),
and that rank(DY h(x, y)) = p. Then for H non-singular

Dy(x) = H−1AT
(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where A = DY h(x, y) ∈ R
p×m, B = D2

XY f(x, y) −∑p

i=1
λiD

2
XY hi(x, y) ∈ R

m×n, C = DXh(x, y) ∈ R
p×n,

H = D2
Y Y f(x, y) −

∑p

i=1
λiD

2
Y Y hi(x, y) ∈ R

m×m, and

λ ∈ R
p satisfies λTA = DY f(x, y).

Symbol D denotes the total or partial (with respect to the

subscripted variable) derivative operator. We refer the reader

to Gould et al. (2021) for the full derivation.

Given an incoming gradient of a loss with respect to the out-

put (i.e., solution) DL(y), back-propagation computes the

gradient of the loss with respect to the input x via the chain

rule of differentiation as DL(x) = DL(y)Dy(x). As men-

tioned, however, terms involving A, namely (AH−1AT)−1,

may present significant computational challenges. Ignoring

such terms gives a computationally much simpler expres-

sion, but how well does it approximate the true gradient?
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Formally, define Ĥ = D2
Y Y f(x, y) so that H = Ĥ −∑p

i=1
λiD

2
Y Y hi(x, y) for a constrained problem. Let vT =

DL(y) ∈ R
1×m be the incoming gradient of the loss

L with respect to output y, let gT = vTDy(x) be the

true gradient of the loss with respect to input x and let

ĝT = vTD̂y(x) = −vTĤ−1B be the approximation ob-

tained by ignoring constraints. We wish to understand when

−ĝ is a descent direction for L, i.e., when is

gTĝ ≥ 0 ? (1)

To simplify analysis and make progress towards some theo-

retical insights we will assume a single constraint function

h(u) = 0 that is independent of x. Furthermore, we will

assume that the objective function takes the special form

f(x, u) = xTu+ f̃(u). An example of this is the objective

function for the optimal transport problem. Together, these

assumptions imply that C = 0 and B = I in Prop. 2.1.

Substituting for Dy(x) and D̂y(x) under these assumptions

we have that −ĝ is a descent direction if and only if,

vT
(
H−1 −

H−1aaTH−1

aTH−1a

)
Ĥ−1v ≥ 0, (2)

where we have written aT = A = DY h(y) ∈ R
1×m to

make it clear that we are only considering problems with a

single constraint.1 We now explore two special cases.

2.1. Special Case: Linear Constraints

Consider the case of a single linear equality constraint,

aTu = d. In this case we have D2
Y Y h(u) = 0 and there-

fore H = Ĥ . The condition that our approximate gradient

D̂y(x) = −H−1 always leads to a descent direction is

min
w

wT

(
I −

aaTH−1

aTH−1a

)
w ≥ 0 (3)

which holds if and only if2

max
‖w‖=1

wT

(
aaTH−1

aTH−1a

)
w ≤ 1 (4)

where we have written w = H−1v from Eqn. 2.

Unfortunately this is only true when cond(H) = 1 as the

following proposition shows.

Proposition 2.2. Let H ∈ R
m×m be a non-singular sym-

metric matrix and let a be an arbitrary vector in R
n. Then,

1 ≤ max
‖w‖=1

wT

(
aaTH−1

aTH−1a

)
w ≤

1

2
+

cond(H)

2
.

1We recognize that for a single constraint the quantity aTH−1a
is trivial to invert and hence the approximation here offers little
computational advantage. Nevertheless, as we will see, analysis
from this simplification is instructive for more general settings.

2See Appendix A.1 for complete derivation.

The lower bound is bad news. It states that, in general, we

cannot guarantee that the approximation will be a descent

direction for all incoming loss gradients (unless H ∝ I).

But let us not despair. This is in the worst case. The next

result concerns the expected value of gTĝ and tells us that,

if H−1v is isotropic Gaussian distributed, then −vTD̂y(x)
is a descent direction of the loss on average.

Proposition 2.3. Let w ∼ N (0, I). Then

E

[
wT

(
I −

aaTH−1

aTH−1a

)
w

]
= m− 1 ≥ 0.

The result can be extended to multiple (1 ≤ p ≤ m) linear

equality constraints Au = d as follows.

Proposition 2.4. Let w ∼ N (0, I). Then

E

[
wT

(
I −AT

(
AH−1AT

)−1
AH−1

)
w
]
= m− p ≥ 0.

This result is encouraging: for linear equality constrained

problems we can expect the approximate gradient to be a

descent direction. Next we turn our attention to a non-linear

constraint where the story is not as straightforward.

2.2. Special Case: Normalization Constraint

We now consider the case of a single non-linear constraint,

the normalization constraint, ‖u‖2 = 1, which occurs in

many problems such as projection onto the L2-sphere and

eigen decomposition.

Once again, let Ĥ = D2
Y Y f(x, y) and H = D2

Y Y f(x, y)−

λD2
Y Y h(y) = Ĥ − λI . We will assume that Ĥ−1 and H−1

exist.3 Here we have a ∝ y so the general condition for

the approximate gradient ĝ = −vTĤ−1 to be a descent

direction is

vT
(
H−1 −

H−1yyTH−1

yTH−1y

)
Ĥ−1v ≥ 0. (5)

The left-hand side represents gTĝ. As for the linear equality

constrained case, we can compute its expected value.

Proposition 2.5. Let H−1v ∼ N (0, I) and other quantities

as defined above for the normalization constrained special

case. Then

E
[
gTĝ

]
=

m∑

i=1

λi − λ

λi

−
yTĤ−1y

yTH−1y

where λ1 ≤ λ2 ≤ · · · ≤ λm are the eigenvalues of Ĥ .

3This implies, in particular, that λ is not an eigenvalue of Ĥ ,
which is clearly not true for eigen decomposition (where we also
have B 6= I). Still, some useful insights can be gained. A similar
argument may be possible using pseudo-inverses or going back to
the optimality conditions and deriving gradients directly.
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Figure 1. Common experimental setup to compare behavior of

approximate and exact gradients of constrained differentiable opti-

misation problems in a deep declarative network. Training data is

a batch of randomly sampled input-target pairs (zb, y
?

b ) ∈ R
d ×Y .

The input zb passes through a multi-layer perceptron to generate

the parametrization xb for a declarative node whose output (i.e.,

optimal value) is yb. Thus yb is ultimately a function of the input

zb and network parameters θ. Training aims to adjust θ so as to

minimize the square difference between output yb and target y?

b .

The above result is for general Hessian matrix Ĥ and ar-

bitrary λ. Let us consider two important (non-exhaustive)

cases to give concrete bounds.

Proposition 2.6. Let Ĥ � 0, and let g and ĝ be the true

and approximate gradients, respectively, as defined above.

(i) If λ < λ1, then E
[
gTĝ

]
≥ 0;

(ii) If λ > λm, then E
[
gTĝ

]
≤ 0,

where λ1 and λm are the smallest and largest eigenvalues

of Ĥ , respectively.

In summary, for the former case −ĝ is a descent direction on

average, whereas for the latter case it is an ascent direction!

Analogous results hold for Ĥ ≺ 0.

3. Examples and Experiments

In this section we experimentally validate the findings from

above on three different optimization problems. Our experi-

mental setup is depicted in Fig. 1. Briefly, a data generating

network provides input for a differentiable optimization

problem. We train the data generating network so that the

solution of the optimization problem matches some prede-

termined target. Further details are provided in Appendix B.

3.1. Euclidean Projection onto L2-sphere

Let us start with the simple problem of projecting a point

x ∈ R
n onto the unit sphere,

y(x) ∈

{
argmin 1

2
‖u− x‖2

subject to ‖u‖2 = 1

}
. (6)
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Figure 2. Learning curves (top) for exact and approximate gradi-

ents for projection onto the unit sphere experiments. Bottom curves

show cosine similarity between approximate and exact gradients

for each point on the approximate learning curve. Left versus right

shows low- versus high-dimensional zb, respectively.

Here we have closed-form solution, y = 1

‖x‖x, with true

and expected gradients given by

Dy(x) =
1

‖x‖

(
I − yyT

)
and D̂y(x) = I. (7)

The approximate gradient always gives a descent direction

(when Dy(x) exists) since I − yyT is positive semidefinite.

Experimental results in Fig. 2 confirm that the approximate

gradient is always a descent direction, i.e., gTĝ > 0, (bottom

plots), and appears to work well for learning the parameters

of the MLP especially during early iterations (top plots).

3.2. Optimal Transport

Entropy regularized optimal transport is a linear equality

constrained optimization problem (Cuturi, 2013),

minimize 〈P,M〉+ 1

γ
KL(P‖rcT)

subject to P1 = r and PT1 = c,
(8)

over variable P ∈ R
m×n
+ , where M ∈ R

m×n is an input

cost matrix, r and c are positive vectors of row and column

sum constraints (with 1Tr = 1Tc). Hyper-parameter γ > 0
controls the strength of the regularization term.

Typical learning curves and gradient similarity per iteration

is shown in Fig. 4, depicting behavior much like the previous

example—the approximate gradient is always a descent

direction and works especially well during the early stages

of training. This is consistent with our analysis.
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Figure 3. Learning curves (top) and corresponding gradient cosine similarity (bottom) for eigen decomposition experiments. For (a) the

loss is applied to all eigenvectors; for (b)–(d) it is only applied to the eigenvector corresponding to the largest eigenvalue.

3.3. Eigen Decomposition

Given a real symmetric matrix X = XT ∈ Rm×m, the

(unit) eigenvector associated with the largest eigenvalue

of X can be found by solving the following equality con-

strained optimization problem (Ghojogh et al., 2019),

maximize (over u ∈ Rm) uTXu

subject to uTu = 1.
(9)

Here we assume that the largest eigenvalue is simple other-

wise a well-defined derivative does not exist. The optimality

conditions for solution y ∈ Rm are thus4,

Xy − λmaxy = 0m and yTy = 1, (10)

which gives differentials (Magnus, 1985),

dy = (λmaxI −X)†(dX)y (11)

where † denotes pseudo-inverse. So with respect to the

(i, j)-th component of X , and using symmetry, we have

DXij
y(X) = −

1

2
(X − λmaxI)

†(yjei + yiej). (12)

Ignoring the equality constraint uTu = 1 we arrive at

D̂Xij
y(X) = −

1

2
X†(yjei + yiej). (13)

There is no computational gain here unless we need deriva-

tives for multiple different eigenvectors and hence require

multiple pseudo-inverses (X − λkI)
† for the exact gradient.

Moreover, results shown in Fig. 3 confirm our analysis that

the approximation is a poor choice, and rarely a descent di-

rection, unless y corresponds to the max. eigenvalue and all

4Indeed, this holds for any simple eigenvalue-eigenvector pair.

other eigenvalues are negative (equiv., the min. eigenvalue

and all other eigenvalues are positive), as in Fig. 3(c).

4. Discussion

We have shown that (for certain objective functions) ignor-

ing linear constraints gives a descent direction on average

but that this does not always hold for normalization con-

straints. Experiments verify our analysis, and also show

that even when we have a descent direction, the approxi-

mation tends to only work well in early stages of training.

Whenever using approximations their behavior should be

well-understood. This work is a step towards understanding

of gradient approximations in differentiable optimization.
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Figure 4. Learning curves (top) and corresponding gradient cosine

similarity (bottom) for optimal transport experiments.
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A. Proofs and Derivations

A.1. Derivation of Equation 4

Consider the function f(w) = wT

(
I − aaTH−1

aTH−1a

)
w. If w = 0, then f(w) = 0. Otherwise,

f(w) ≥ 0 ⇐⇒
1

‖w‖22
f(w) ≥ 0. (14)

But

1

‖w‖22
f(w) =

1

‖w‖22
wT

(
I −

aaTH−1

aTH−1a

)
w = 1−

wT

‖w‖2

(
aaTH−1

aTH−1a

)
w

‖w‖2
(15)

Therefore,

min
w

wT

(
I −

aaTH−1

aTH−1a

)
w ≥ 0 ⇐⇒ max

‖w‖=1
wT

(
aaTH−1

aTH−1a

)
w ≤ 1. (16)

A.2. Proof of Proposition 2.2

We begin with three useful lemmas for rank-1 quadratic forms, f(x) = xT

(
abT

aTb

)
x = xT

(
abT+baT

2aTb

)
x with aTb 6= 0.

Lemma A.1. Let M = abT + baT. Then M has eigenvalues λ1,2 = aTb ± ‖a‖‖b‖ with corresponding orthonormal

eigenvectors q1,2 ∝ ‖b‖a± ‖a‖b.

Proof. By direct substitution,

Mq1 = (abT + baT)(‖b‖a+ ‖a‖b) (17)

= abT(‖b‖a+ ‖a‖b) + baT(‖b‖a+ ‖a‖b) (18)

= (bTa+ ‖a‖‖b‖)‖b‖a+ (‖b‖‖a‖+ aTb)‖a‖b (19)

= (aTb+ ‖a‖‖b‖)(‖b‖a+ ‖a‖b) (20)

= λ1q1 (21)

and similarly for λ2 and q2. We can verify orthogonality of q1 and q2 as

qT1 q2 = (‖b‖a+ ‖a‖b)T(‖b‖a− ‖a‖b) (22)

= ‖b‖2‖a‖2 − ‖b‖‖a‖aTb+ ‖a‖‖b‖bTa− ‖a‖2‖b‖2 (23)

= 0 (24)

Lemma A.2. The eigenvalue spectrum of M = 1
2

(
abT+baT

aTb

)
with aTb 6= 0 is

σ

(
abT + baT

2aTb

)
=

{
1

2
−

‖a‖‖b‖

2|aTb|
, 0, . . . , 0,

1

2
+

‖a‖‖b‖

2|aTb|

}

Proof. Follows from Lemma A.1 taking careful note of the sign of aTb. To see that all other eigenvalues are zero, note that

M is a rank-2 matrix (rank-1 if a and b are linearly dependent) and so has at most two non-zero eigenvalues.

It follows also that if a and b are linearly dependent then 1
2

(
abT+baT

aTb

)
has a single non-zero eigenvalue of 1. Moreover, for

any non-orthogonal a and b, the sum of eigenvalues is equal to one.
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Lemma A.3. Let a, b ∈ Rn with aTb 6= 0. Then

max
‖x‖=1

xT

(
abT

aTb

)
x =

1

2
+

‖a‖‖b‖

2|aTb|
.

Proof. We have

max
‖x‖=1

xT

(
abT

aTb

)
x = max

‖x‖=1
xT

(
abT + baT

2aTb

)
x = λmax

(
abT + baT

2aTb

)
=

1

2
+

‖a‖‖b‖

2|aTb|
(25)

by Lemma A.2.

We are now ready to prove Prop. 2.2. From Lemma A.3 with b = H−1a we have

max
‖w‖=1

wT

(
aaTH−1

aTH−1a

)
w =

1

2
+

‖a‖ · ‖H−1a‖

2|aTH−1a|
(26)

By the Cauchy-Schwarz inequality |aTH−1a| ≤ ‖a‖ · ‖H−1a‖ with equality if and only if a and H−1a are linearly

dependent. This gives the lower bound,

max
‖w‖=1

wT

(
aaTH−1

aTH−1a

)
w ≥ 1. (27)

For the upper bound, observe that |aTH−1a| ≥ σmin(H
−1)‖a‖2 and ‖H−1a‖ ≤ σmax(H

−1)‖a‖ to get

‖a‖ · ‖H−1a‖

|aTH−1a|
≤

‖a‖ · σmax(H
−1)‖a‖

σmin(H−1)‖a‖2
=

σmax(H
−1)

σmin(H−1)
= cond(H). (28)

A.3. Proof of Proposition 2.3

The following general result on the expected value for a quadratic form is from Seber & Lee (2003)[Thm. 1.5, p. 9]. It can

be easily proved by direct evaluation, using the cyclic property of trace, linearity of trace and expectation, and definition of

variance.

Lemma A.4. (Seber & Lee, 2003). Let X = (xi) be an n× 1 vector of random variables, and let A be an n×n symmetric

matrix. If E [X] = µ and Var(X) = Σ = (σij), then

E
[
xTAx

]
= tr(AΣ) + µTAµ.

The above result extends to nonsymmetric A since, xTAx = xT 1
2 (A+AT)x and tr(AΣ) = tr

(
ΣAT

)
= tr

(
ATΣ

)
so that

tr(AΣ) =
1

2

(
tr(AΣ) + tr

(
ATΣ

))
= tr

(
1

2
(A+AT)Σ

)
. (29)

Now assuming the quantity w in

gTĝ = wT

(
I −

aaTH−1

aTH−1a

)
w (30)

is isotropic Gaussian distributed, then

Ew∼N (0,I)

[
wT

(
I −

aaTH−1

aTH−1a

)
w

]
= tr

(
I −

aaTH−1

aTH−1a

)
(31)

= tr(I)− tr

(
aaTH−1

aTH−1a

)
(32)

= m− 1 (33)

where the first line is from Lemma A.4, the second line is by linearity of trace, and the last line is by the trace of a matrix

equalling the sum of its eigenvalues, which is m for the identity and one for the second term by Lemma A.2.
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A.4. Proof of Proposition 2.4

From Lemma A.4 we have

Ew∼N (0,I)

[
wT

(
I −AT

(
AH−1AT

)−1
AH−1

)
w
]
= tr

(
I −AT

(
AH−1AT

)−1
AH−1

)
(34)

= tr(I)− tr
(
AT
(
AH−1AT

)−1
AH−1

)
(35)

= tr(Im)− tr
((

AH−1AT
)−1

AH−1AT

)
(36)

= tr(Im)− tr(Ip) (37)

= m− p (38)

where we have used the cyclic property of trace on the third line, and that A is full rank and H � 0 on the fourth line.

A.5. Proof of Proposition 2.5

Let Ĥ = QΛQT where Λ = diag (λ1, . . . , λm) is a diagonal matrix containing the eigenvalues of Ĥ arranged in ascending

order. Then H = Q(Λ− λI)QT. Since Ĥ and H share the same eigenvectors they are simultaneously diagonalizable and

so commute. Therefore

vT
(
H−1 −

H−1yyTH−1

yTH−1y

)
Ĥ−1v = vT

(
H−1Ĥ−1 −

H−1yyTH−1Ĥ−1

yTH−1y

)
v (39)

= vT

(
H−1Ĥ−1HH−1 −

H−1yyTĤ−1H−1

yTH−1y

)
v (40)

= vTH−1

(
Ĥ−1H −

yyTĤ−1

yTH−1y

)
H−1v (41)

= wT

(
Ĥ−1H −

yyTĤ−1

yTH−1y

)
w (42)

where in the second line we have used that Ĥ and H commute in the second term, then factored out H−1 in the third line,

and substituted w = H−1v in the last line. As for the linear equality constrained case, we can compute expectations,

Ew∼N (0,I)

[
gTĝ

]
= Ew∼N (0,I)

[
wT

(
Ĥ−1H −

yyTĤ−1

yTH−1y

)
w

]
(43)

= tr

(
Ĥ−1H −

yyTĤ−1

yTH−1y

)
(44)

= tr
(
Ĥ−1H

)
− tr

(
yyTĤ−1

yTH−1y

)
(45)

= tr
(
QΛ−1QTQ(Λ− λI)QT

)
− tr

(
yTĤ−1y

yTH−1y

)
(46)

= tr
(
Λ−1(Λ− λI)

)
− tr

(
yTĤ−1y

yTH−1y

)
(47)

=

m∑

i=1

λi − λ

λi
−

yTĤ−1y

yTH−1y
(48)

where λ1 ≤ λ2 ≤ · · · ≤ λm are the eigenvalues of Ĥ and λ1 − λ ≤ λ2 − λ ≤ · · · ≤ λm − λ are the eigenvalues of H .

A.6. Proof of Proposition 2.6

We consider each case.
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Case 1 (Ĥ � 0, λ < λ1). In this case H is positive definite. Write Ĥ = QΛQT and H = Q(Λ− λI)QT. Then

min
‖y‖=1

−
yTĤ−1y

yTH−1y
= − max

‖y‖=1

yTĤ−1y

yTH−1y
(49)

= − max
‖y‖=1

yTH1/2Ĥ−1H1/2y (50)

= − max
‖y‖=1

yT
(
Q(Λ− λI)1/2QT

)
QΛ−1QT

(
Q(Λ− λI)1/2QT

)
y (51)

= − max
‖y‖=1

yT(Λ− λI)1/2Λ−1(Λ− λI)1/2y (52)

= − max
i=1,...,m

{
λi − λ

λi

}
(53)

=

{
−λm−λ

λm
, if λ ≥ 0

−λ1−λ
λ1

, otherwise.
(54)

Therefore,

Ew∼N (0,I)

[
gTĝ

]
≥

m∑

i=1

λi − λ

λi
− max

i=1,...,m

{
λi − λ

λi

}
(55)

=

{∑m−1
i=1

λi−λ
λi

, if λ ≥ 0∑m
i=2

λi−λ
λi

, otherwise
(56)

≥ 0 (57)

since each λi−λ
λi

is positive.

Case 2 (Ĥ � 0, λ > λm). In this case H is negative definite, and we have

max
‖y‖=1

−
yTĤ−1y

yTH−1y
= max

‖y‖=1

yTĤ−1y

yT(−H−1)y
(58)

= max
‖y‖=1

yT(−H)1/2Ĥ−1(−H)1/2y (59)

= max
‖y‖=1

yT
(
Q(λI − Λ)1/2QT

)
QΛ−1QT

(
Q(λI − Λ)1/2QT

)
y (60)

= max
‖y‖=1

yT(λI − Λ)1/2Λ−1(λI − Λ)1/2y (61)

= max
i=1,...,m

{
λ− λi

λi

}
(62)

=
λ− λ1

λ1
. (63)

Therefore,

Ew∼N (0,I)

[
gTĝ

]
≤

m∑

i=1

λi − λ

λi
+

λ− λ1

λ1
(64)

=
m∑

i=2

λi − λ

λi
(65)

≤ 0 (66)

since each λi−λ
λi

is negative.
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B. Experimental Details

We follow the same experimental procedure for all three example optimization problems—Euclidean projection onto the

unit sphere, optimal transport, and eigen decomposition—as depicted in Fig. 1. The network architecture consists of a

three-layer multi-layer perceptron (MLP) with ReLU activation layers. The MLP maps d-dimensional raw input data zb into

the input for a deep declarative node (also known as a differentiable optimization layer) denoted xb. This is an n-dimensional

vector for Euclidean projection, an m-by-n dimensional matrix for optimal transport (for simplicity we set n = m), and

an m-by-m real symmetric matrix for eigen decomposition. Using this input the declarative node solves the associated

optimization problem, outputting the solution yb corresponding to zb. As such the output of the network yb can be thought

of as a function of input xb and MLP parameters θ.

A single batch of ten input-target pairs {(zb, y
?
b )}

10
b=1 is randomly generated and used as training data for the parameters θ of

the MLP. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 10−3 and run for a total of 500

iterations. The loss function of Euclidean projection and optimal transport is the mean-square-error,

L(θ) =
1

B

B∑

b=1

‖yb(zb, θ)− y?b‖
2
2 (67)

whereas for eigen decomposition we use the mean absolute-value of the cosine similarity,

L(θ) =
1

B

B∑

b=1

|yb(zb, θ)
Ty?b |. (68)

The latter allows us to seamlessly deal with the sign ambiguity of eigenvectors (i.e., if q is a unit eigenvector then so is −q).

We run five repeats of each experiment, randomly resampling the training data for each run. Learning curve plots show the

loss function versus training iteration for each individual run (light) and the average over all five runs (dark).

For Euclidean projection and optimal transport we include two different input settings, d = 5 and d = 100, which we denote

as under and over parameterized in the plots. This reflects the fact that it is easier to learn a mapping from high-dimensional

input zb to arbitrary target y?b than for low-dimensional zb. We set m = 10 for both problems. For eigen decomposition

we experiment with four different settings: (a) a loss on all eigenvectors yk for a general input matrix X , (b) a loss on just

the eigenvector corresponding to the maximum eigenvalue for general input matrix X , (c) the same loss but with negative

definite input matrix, and (d) the same loss but with a rank-2 positive definite input matrix. In all cases we set d = 5 and

m = 10.

In addition to the learning curves we plot the cosine-similarity between the true and approximate gradient of the loss with

respect to the input of the declarative node xb. This is done for each point on the learning curve for approximate gradient. A

value greater than zero indicates that the corresponding approximate gradient is a descent direction with respect to xb. We

note that this does not necessarily mean that it is a descent direction with respect to the parameters θ of the MLP, which

depends on the structure of Dθxb. In other words, a descent direction for xb does not guarantee a descent direction for θ.

All experiments were run using PyTorch 1.13.0 (Paszke et al., 2017) on an Intel i7-8565U CPU @ 1.80GHz. Full source

code available at http://deepdeclarativenetworks.com.
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